Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 181232 by mr W last updated on 23/Nov/22

Commented by mr W last updated on 23/Nov/22

a train drives from A in direction to  D with speed 160 km/h. at the same  time a car drives from B in direction  to E with speed 100 km/h.  after what time is the distance   between them mininum and what is  this minimum distance?  (we treat both train and car as points)

atraindrivesfromAindirectiontoDwithspeed160km/h.atthesametimeacardrivesfromBindirectiontoEwithspeed100km/h.afterwhattimeisthedistancebetweenthemmininumandwhatisthisminimumdistance?(wetreatbothtrainandcaraspoints)

Answered by mahdipoor last updated on 23/Nov/22

  befor h=(1/(10)) (at h=(1/(10)) trainB in C ),  d(=distance among trains) was increas   after h=(1/8) (trainA in C), d will increas   among 1/8≥h≥1/10 ⇒  d^2 =(100h−10)^2 +(20−160h)^2   −2×(100h−10)(20−160h)cos60  d(d^2 )/dh=2(100h−10)100−2(20−160h)160  −100(20−160h)+160(100h−10)=  360(100h−10)−420(20−160h)=0  ⇒1032h−120=0⇒h=(5/(43))≈.12  ⇒0.125>0.12>0.1⇒  min(d^2 )=d^2 (h=(5/(43)))=((100)/(43)) km^2   ⇒min d=((10)/( (√(43))))≈1.525 km

beforh=110(ath=110trainBinC),d(=distanceamongtrains)wasincreasafterh=18(trainAinC),dwillincreasamong1/8h1/10d2=(100h10)2+(20160h)22×(100h10)(20160h)cos60d(d2)/dh=2(100h10)1002(20160h)160100(20160h)+160(100h10)=360(100h10)420(20160h)=01032h120=0h=543.120.125>0.12>0.1min(d2)=d2(h=543)=10043km2mind=10431.525km

Commented by mr W last updated on 23/Nov/22

thanks sir!

thankssir!

Commented by mahdipoor last updated on 23/Nov/22

tnx , i edited

tnx,iedited

Answered by mr W last updated on 23/Nov/22

Commented by mr W last updated on 23/Nov/22

Using method of relative motion  assume the car doesn′t move. then  the train moves with the relative  velocity v in direction F, see picture.  the shortest distance between car   and train is the distance from B to   the line AF.  v=(√(160^2 +100^2 +160×100))=20(√(129)) km/h  sin α=((100)/(20(√(129))))×sin 120=(5/( 2(√(43))))  β=90°−α  sin β=cos α=((7(√3))/(2(√(43))))  ((BQ)/(sin 60°))=((CQ)/(sin (60°+β)))=((CB)/(sin β))  BQ=((10×2(√(43)))/(7(√3)))×((√3)/2)=((10(√(43)))/7)  CQ=((10×2(√(43)))/(7(√3)))×(((√3)/2)×(5/(2(√(43))))+(1/2)×((7(√3))/(2(√(43)))))         =((60)/7)  PB=(20+((60)/7)) sin α−((10(√(43)))/7)        =((10)/( (√(43))))≈1.525 km  t=((AP)/v)=(1/(20(√(129))))(20+((60)/7))cos α    =(5/(43))≈0.116 h =6 min 58.6 sec

Usingmethodofrelativemotionassumethecardoesntmove.thenthetrainmoveswiththerelativevelocityvindirectionF,seepicture.theshortestdistancebetweencarandtrainisthedistancefromBtothelineAF.v=1602+1002+160×100=20129km/hsinα=10020129×sin120=5243β=90°αsinβ=cosα=73243BQsin60°=CQsin(60°+β)=CBsinβBQ=10×24373×32=10437CQ=10×24373×(32×5243+12×73243)=607PB=(20+607)sinα10437=10431.525kmt=APv=120129(20+607)cosα=5430.116h=6min58.6sec

Commented by Acem last updated on 23/Nov/22

Commented by Acem last updated on 23/Nov/22

The qusetion is very good , thank you for it Sir.  Well, please check the difference between   2.32 and 1.538 km    2nd: am confused that why i got                        7 min :                  2330 meter   but time  6 min 58.6 sec : 2320 meter   there′s a difference about 10 meter    Note: i will write mine when finish my work

Thequsetionisverygood,thankyouforitSir.Well,pleasecheckthedifferencebetween2.32and1.538km2nd:amconfusedthatwhyigot7min:2330meterbuttime6min58.6sec:2320metertheresadifferenceabout10meterNote:iwillwriteminewhenfinishmywork

Commented by mr W last updated on 23/Nov/22

correct answer:  after (5/(43)) h, i.e. 6 min 58.6 sec the  shortest distance ((10)/( (√(43))))≈1.525  km.

correctanswer:after543h,i.e.6min58.6sectheshortestdistance10431.525km.

Answered by mr W last updated on 23/Nov/22

Commented by mr W last updated on 23/Nov/22

An other geometrical way  say when train is at point A_1  and  car is at point B_1  their distance is  minimum, at this moment the rate  in which their distance changes is   zero:  160 cos θ_1 −100 cos θ_2 =0   ⇒cos θ_1 =(5/8) cos θ_2   θ_1 +θ_2 =180°−60°=120°  cos θ_1 =cos (120°−θ_2 )=−(1/2) cos θ_2 +((√3)/2) sin θ_2   (5/8) cos θ_2 =−(1/2) cos θ_2 +((√3)/2) sin θ_2   ⇒tan θ_2 =(9/(4(√3)))   ⇒cos θ_2 =(4/( (√(43)))) ⇒cos θ_1 =(5/( 2(√(43))))  ⇒sin θ_1 =((7(√3))/(2(√(43)))), sin θ_2 =((3(√3))/( (√(43))))  A_1 C=20−160t  B_1 C=100t−10  ((A_1 C)/(sin θ_2 ))=((B_1 C)/(sin θ_1 ))=((A_1 B_1 )/(sin 60°))  (((√(43))(20−160t))/( 3(√3)))=((2(√(43))(100t−10))/(7(√3)))=((A_1 B_1 )/(sin 60°))  (((√(43))(20−160t))/( 3(√3)))=((2(√(43))(100t−10))/(7(√3)))  ⇒t=(5/(43)) ✓  A_1 B_1 =(((√(43))(20−160×(5/(43))))/( 3(√3)))×((√3)/2)=((10)/( (√(43)))) ✓

AnothergeometricalwaysaywhentrainisatpointA1andcarisatpointB1theirdistanceisminimum,atthismomenttherateinwhichtheirdistancechangesiszero:160cosθ1100cosθ2=0cosθ1=58cosθ2θ1+θ2=180°60°=120°cosθ1=cos(120°θ2)=12cosθ2+32sinθ258cosθ2=12cosθ2+32sinθ2tanθ2=943cosθ2=443cosθ1=5243sinθ1=73243,sinθ2=3343A1C=20160tB1C=100t10A1Csinθ2=B1Csinθ1=A1B1sin60°43(20160t)33=243(100t10)73=A1B1sin60°43(20160t)33=243(100t10)73t=543A1B1=43(20160×543)33×32=1043

Commented by Acem last updated on 23/Nov/22

Commented by mr W last updated on 23/Nov/22

you miscalculated L.

youmiscalculatedL.

Commented by Acem last updated on 23/Nov/22

(√(how am i?))     We both have the same results! thank you   after a little will write the method

howami?Webothhavethesameresults!thankyouafteralittlewillwritethemethod

Terms of Service

Privacy Policy

Contact: info@tinkutara.com