Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 181313 by a.lgnaoui last updated on 23/Nov/22

Montrer que  3^(2n+1) +2^(n+2)    est divisible par 7

Montrerque32n+1+2n+2estdivisiblepar7

Answered by mr W last updated on 23/Nov/22

3^(2n+1) +2^(n+2)  mod 7  =3×(7+2)^n +4×2^n  mod 7  =3×2^n +4×2^n  mod 7  =7×2^n  mod 7  =0

32n+1+2n+2mod7=3×(7+2)n+4×2nmod7=3×2n+4×2nmod7=7×2nmod7=0

Commented by a.lgnaoui last updated on 24/Nov/22

thanks

thanks

Answered by Acem last updated on 23/Nov/22

 3^( 2n+1) + 2^( n+2)  = 3^(2n) ×3 +2^n ×2^2                                = 9^( n)  ×3 + 2^n  ×4 ...(1)   9^1 ≡ 2 [7] ⇒ 9^n ≡ 2^n  [7]    3^( 2n+1) + 2^( n+2)  ≡ 2^n  ×3 +2^n ×4= 2^n ×7                               ≡ 0 [7]     Donc  3^( 2n+1) + 2^( n+2)  est divisible par sept

32n+1+2n+2=32n×3+2n×22=9n×3+2n×4...(1)912[7]9n2n[7]32n+1+2n+22n×3+2n×4=2n×70[7]Donc32n+1+2n+2estdivisibleparsept

Commented by a.lgnaoui last updated on 24/Nov/22

thanks

thanks

Commented by Acem last updated on 24/Nov/22

De rien

Derien

Terms of Service

Privacy Policy

Contact: info@tinkutara.com