Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 181330 by Mastermind last updated on 24/Nov/22

Solve:  (dy/dx)+2x(y+1)=0,            y(0)=2

$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2x}\left(\mathrm{y}+\mathrm{1}\right)=\mathrm{0},\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{2} \\ $$

Answered by FelipeLz last updated on 24/Nov/22

(dy/dx)+2x(y+1) = 0  (dy/dx)+2xy = −2x  (dy/dx)e^x^2  +2xe^x^2  y = −2xe^x^2    (d/dx)[ye^x^2  ] = −2xe^x^2    ye^x^2  = −∫2xe^x^2  dx  ye^x^2   = −e^x^2  +c  y(x) = ce^(−x^2 ) −1  y(0) = 2 → ce^(−0^2 ) −1 = 2 ⇒ c = 3  y(x) = 3e^(−x^2 ) −1  •  (dy/dx)+2x(y+1) = 0  (dy/dx) = −2x(y+1)  (1/(y+1))dy = −2xdx  ∫(1/(y+1))dy = −∫2xdx  ln∣y+1∣+c_1  = −x^2 +c_2   ln∣y+1∣ = −x^2 +c_2 −c_1   c_2 −c_1  = c_3  → ln∣y+1∣ = −x^2 +c_3   y+1 = e^(−x^2 +c_3 )   e^c_3   = C → y+1 = Ce^(−x^2 )   y(x) = Ce^(−x^2 ) −1  y(0) = 2 → Ce^(−0^2 ) −1 = 2 ⇒ C = 3  y(x) = 3e^(−x^2 ) −1

$$\frac{{dy}}{{dx}}+\mathrm{2}{x}\left({y}+\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}+\mathrm{2}{xy}\:=\:−\mathrm{2}{x} \\ $$$$\frac{{dy}}{{dx}}{e}^{{x}^{\mathrm{2}} } +\mathrm{2}{xe}^{{x}^{\mathrm{2}} } {y}\:=\:−\mathrm{2}{xe}^{{x}^{\mathrm{2}} } \\ $$$$\frac{{d}}{{dx}}\left[{ye}^{{x}^{\mathrm{2}} } \right]\:=\:−\mathrm{2}{xe}^{{x}^{\mathrm{2}} } \\ $$$${ye}^{{x}^{\mathrm{2}} } =\:−\int\mathrm{2}{xe}^{{x}^{\mathrm{2}} } {dx} \\ $$$${ye}^{{x}^{\mathrm{2}} } \:=\:−{e}^{{x}^{\mathrm{2}} } +{c} \\ $$$${y}\left({x}\right)\:=\:{ce}^{−{x}^{\mathrm{2}} } −\mathrm{1} \\ $$$${y}\left(\mathrm{0}\right)\:=\:\mathrm{2}\:\rightarrow\:{ce}^{−\mathrm{0}^{\mathrm{2}} } −\mathrm{1}\:=\:\mathrm{2}\:\Rightarrow\:{c}\:=\:\mathrm{3} \\ $$$${y}\left({x}\right)\:=\:\mathrm{3}{e}^{−{x}^{\mathrm{2}} } −\mathrm{1} \\ $$$$\bullet \\ $$$$\frac{{dy}}{{dx}}+\mathrm{2}{x}\left({y}+\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}\:=\:−\mathrm{2}{x}\left({y}+\mathrm{1}\right) \\ $$$$\frac{\mathrm{1}}{{y}+\mathrm{1}}{dy}\:=\:−\mathrm{2}{xdx} \\ $$$$\int\frac{\mathrm{1}}{{y}+\mathrm{1}}{dy}\:=\:−\int\mathrm{2}{xdx} \\ $$$$\mathrm{ln}\mid{y}+\mathrm{1}\mid+{c}_{\mathrm{1}} \:=\:−{x}^{\mathrm{2}} +{c}_{\mathrm{2}} \\ $$$$\mathrm{ln}\mid{y}+\mathrm{1}\mid\:=\:−{x}^{\mathrm{2}} +{c}_{\mathrm{2}} −{c}_{\mathrm{1}} \\ $$$${c}_{\mathrm{2}} −{c}_{\mathrm{1}} \:=\:{c}_{\mathrm{3}} \:\rightarrow\:\mathrm{ln}\mid{y}+\mathrm{1}\mid\:=\:−{x}^{\mathrm{2}} +{c}_{\mathrm{3}} \\ $$$${y}+\mathrm{1}\:=\:{e}^{−{x}^{\mathrm{2}} +{c}_{\mathrm{3}} } \\ $$$${e}^{{c}_{\mathrm{3}} } \:=\:{C}\:\rightarrow\:{y}+\mathrm{1}\:=\:{Ce}^{−{x}^{\mathrm{2}} } \\ $$$${y}\left({x}\right)\:=\:{Ce}^{−{x}^{\mathrm{2}} } −\mathrm{1} \\ $$$${y}\left(\mathrm{0}\right)\:=\:\mathrm{2}\:\rightarrow\:{Ce}^{−\mathrm{0}^{\mathrm{2}} } −\mathrm{1}\:=\:\mathrm{2}\:\Rightarrow\:{C}\:=\:\mathrm{3} \\ $$$${y}\left({x}\right)\:=\:\mathrm{3}{e}^{−{x}^{\mathrm{2}} } −\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com