All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 181330 by Mastermind last updated on 24/Nov/22
Solve:dydx+2x(y+1)=0,y(0)=2
Answered by FelipeLz last updated on 24/Nov/22
dydx+2x(y+1)=0dydx+2xy=−2xdydxex2+2xex2y=−2xex2ddx[yex2]=−2xex2yex2=−∫2xex2dxyex2=−ex2+cy(x)=ce−x2−1y(0)=2→ce−02−1=2⇒c=3y(x)=3e−x2−1∙dydx+2x(y+1)=0dydx=−2x(y+1)1y+1dy=−2xdx∫1y+1dy=−∫2xdxln∣y+1∣+c1=−x2+c2ln∣y+1∣=−x2+c2−c1c2−c1=c3→ln∣y+1∣=−x2+c3y+1=e−x2+c3ec3=C→y+1=Ce−x2y(x)=Ce−x2−1y(0)=2→Ce−02−1=2⇒C=3y(x)=3e−x2−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com