Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 18135 by Tinkutara last updated on 15/Jul/17

Let x be the LCM of 3^(2002)  − 1 and  3^(2002)  + 1. Find the last digit of x.

$$\mathrm{Let}\:{x}\:\mathrm{be}\:\mathrm{the}\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} \:−\:\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{3}^{\mathrm{2002}} \:+\:\mathrm{1}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:{x}. \\ $$

Commented by mrW1 last updated on 15/Jul/17

0

$$\mathrm{0} \\ $$

Commented by prakash jain last updated on 16/Jul/17

If A×B is divisible by 10. Then  their LCM is divisible by 10.

$$\mathrm{If}\:\mathrm{A}×\mathrm{B}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{10}.\:\mathrm{Then} \\ $$$$\mathrm{their}\:\mathrm{LCM}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{10}. \\ $$$$ \\ $$

Commented by mrW1 last updated on 16/Jul/17

3^1  ends with 3  3^2  ends with 9  3^3  ends with 7  3^4  ends with 1  generally for k∈N  3^(4k)  ends with 1  3^(4k+1)  ends with 3  3^(4k+2)  ends with 9  3^(4k+3)  ends with 7  since 2002≡2 (mod 4)  ⇒3^(2002)  ends with 9  ⇒3^(2002) −1 ends with 8  ⇒3^(2002) +1 ends with 0  ⇒a multiple of 3^(2002) +1 ends with 0  since LCM of 3^(2002) −1 and 3^(2002) +1 is a multiple of 3^(2002) +1  ⇒LCM of 3^(2002) −1 and 3^(2002) +1 ends with 0

$$\mathrm{3}^{\mathrm{1}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{3} \\ $$$$\mathrm{3}^{\mathrm{2}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{9} \\ $$$$\mathrm{3}^{\mathrm{3}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{7} \\ $$$$\mathrm{3}^{\mathrm{4}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{1} \\ $$$$\mathrm{generally}\:\mathrm{for}\:\mathrm{k}\in\mathrm{N} \\ $$$$\mathrm{3}^{\mathrm{4k}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{1} \\ $$$$\mathrm{3}^{\mathrm{4k}+\mathrm{1}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{3} \\ $$$$\mathrm{3}^{\mathrm{4k}+\mathrm{2}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{9} \\ $$$$\mathrm{3}^{\mathrm{4k}+\mathrm{3}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{7} \\ $$$$\mathrm{since}\:\mathrm{2002}\equiv\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{4}\right) \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{2002}} \:\mathrm{ends}\:\mathrm{with}\:\mathrm{9} \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{2002}} −\mathrm{1}\:\mathrm{ends}\:\mathrm{with}\:\mathrm{8} \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{2002}} +\mathrm{1}\:\mathrm{ends}\:\mathrm{with}\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1}\:\mathrm{ends}\:\mathrm{with}\:\mathrm{0} \\ $$$$\mathrm{since}\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} −\mathrm{1}\:\mathrm{and}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1} \\ $$$$\Rightarrow\mathrm{LCM}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} −\mathrm{1}\:\mathrm{and}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1}\:\mathrm{ends}\:\mathrm{with}\:\mathrm{0} \\ $$

Commented by Tinkutara last updated on 16/Jul/17

But why do you multiply the numbers  for their LCM? Their HCF is not 1.

$$\mathrm{But}\:\mathrm{why}\:\mathrm{do}\:\mathrm{you}\:\mathrm{multiply}\:\mathrm{the}\:\mathrm{numbers} \\ $$$$\mathrm{for}\:\mathrm{their}\:\mathrm{LCM}?\:\mathrm{Their}\:\mathrm{HCF}\:\mathrm{is}\:\mathrm{not}\:\mathrm{1}. \\ $$

Commented by Tinkutara last updated on 16/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Commented by mrW1 last updated on 16/Jul/17

I didn′t multiply the both numbers but  say that the LCM of 3^(2002) −1 and 3^(2002) +1  is a multiple of 3^(2002) +1. since every  multiple of 3^(2002) +1 ends with 0, therefore  the LCM ends also with 0.  in this case 3^(2002) −1 could be every other  number p, the result is the same:  the LCM of p and 3^(2002) +1 has the last  digit 0.

$$\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{multiply}\:\mathrm{the}\:\mathrm{both}\:\mathrm{numbers}\:\mathrm{but} \\ $$$$\mathrm{say}\:\mathrm{that}\:\mathrm{the}\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} −\mathrm{1}\:\mathrm{and}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1}.\:\mathrm{since}\:\mathrm{every} \\ $$$$\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1}\:\mathrm{ends}\:\mathrm{with}\:\mathrm{0},\:\mathrm{therefore} \\ $$$$\mathrm{the}\:\mathrm{LCM}\:\mathrm{ends}\:\mathrm{also}\:\mathrm{with}\:\mathrm{0}. \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{3}^{\mathrm{2002}} −\mathrm{1}\:\mathrm{could}\:\mathrm{be}\:\mathrm{every}\:\mathrm{other} \\ $$$$\mathrm{number}\:\mathrm{p},\:\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}: \\ $$$$\mathrm{the}\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{p}\:\mathrm{and}\:\mathrm{3}^{\mathrm{2002}} +\mathrm{1}\:\mathrm{has}\:\mathrm{the}\:\mathrm{last} \\ $$$$\mathrm{digit}\:\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com