Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 181360 by lapache last updated on 24/Nov/22

Calcul  Σ_(k=0) ^n k((1/3))^k =...

Calculnk=0k(13)k=...

Answered by mahdipoor last updated on 24/Nov/22

way 2:  get f(x)=e^x +e^(2x) +e^(3x) +...+e^(kx)   f(x)(1−e^x )=e^x −e^((k+1)x) ⇒f(x)=((e^x −e^((k+1)x) )/(1−e^x ))  ⇒⇒  (df/dx)=e^x +2e^(2x) +3e^(3x) +...+ke^(kx)   (df/dx)=(((e^x −(k+1)e^((k+1)x) )(1−e^x )−(−e^x )(e^x −e^((k+1)x) ))/((1−e^x )^2 ))=  ⇒x=ln3   or   e^x =(1/3)⇒  (df/dx)(x=ln3)=(1/3)+(2/3^2 )+....+(k/3^k )  (df/dx)(x=ln3)=((((1/3)−((k+1)/3^(k+1) ))((2/3))−(((−1)/3))((1/3)−(1/3^(k+1) )))/(((2/3))^(2  ) ))=  (3/4)−((2k+3)/(4×3^k ))  ⇒⇒(1/3)+(2/3^2 )+...+(k/3^k )=(3/4)−((2k+3)/(4×3^k ))

way2:getf(x)=ex+e2x+e3x+...+ekxf(x)(1ex)=exe(k+1)xf(x)=exe(k+1)x1ex⇒⇒dfdx=ex+2e2x+3e3x+...+kekxdfdx=(ex(k+1)e(k+1)x)(1ex)(ex)(exe(k+1)x)(1ex)2=x=ln3orex=13dfdx(x=ln3)=13+232+....+k3kdfdx(x=ln3)=(13k+13k+1)(23)(13)(1313k+1)(23)2=342k+34×3k⇒⇒13+232+...+k3k=342k+34×3k

Answered by SEKRET last updated on 24/Nov/22

  A= Σ_(k=0) ^n  (k/3^k ) =(1/3)+(2/3^2 )+(3/3^3 )+(4/3^4 )+....+(n/3^n )    (A/3)=Σ_(k=0) ^n  (k/3^(k+1) )=(1/3^2 )+(2/3^3 )+(3/3^4 )+(4/3^5 )+..+(n/3^(n+1) )    ((2A)/3) = (1/3)+(1/3^2 )+(1/3^3 )+(1/3^4 )+...+(1/3^n )+(n/3^(n+1) )  ......

A=nk=0k3k=13+232+333+434+....+n3nA3=nk=0k3k+1=132+233+334+435+..+n3n+12A3=13+132+133+134+...+13n+n3n+1......

Answered by mahdipoor last updated on 24/Nov/22

I⇒((1/3)+(2/3^2 )+(3/3^3 )+...(n/3^n ))×(1−(1/3))=  (1/3)+(2/3^2 )+...+((n−1)/3^(n−1) )+(n/3^n )−((1/3^2 )+(2/3^3 )+...((n−1)/3^n )+(n/3^(n+1) ))=  (1/3)+(1/3^2 )+...+(1/3^n )−(n/3^(n+1) )  II⇒((1/3)+(1/3^2 )+...+(1/3^n ))×(1−(1/3))=(1/3)−(1/3^(n+1) )  I & II ⇒Σ_(k=0) ^n k((1/3))^k =((1/3)+(2/3^2 )+...+(n/3^n ))=  ((((1/3)+(2/3^2 )+...+(n/3^n ))(1−(1/3)))/((1−(1/3))))=(((1/3)+(1/3^2 )+...+(1/3^n )−(n/3^(n+1) ))/(2/3))=  ((((((1/3)+(1/3^2 )+...+(1/3^n ))(1−(1/3)))/((1−(1/3))))−(n/3^(n+1) ))/(2/3))=  ((((((1/3)−(1/3^(n+1) )))/(2/3))−(n/3^(n+1) ))/(2/3))=(3/4)−((3+2n)/(4×3^n ))

I(13+232+333+...n3n)×(113)=13+232+...+n13n1+n3n(132+233+...n13n+n3n+1)=13+132+...+13nn3n+1II(13+132+...+13n)×(113)=1313n+1I&IInk=0k(13)k=(13+232+...+n3n)=(13+232+...+n3n)(113)(113)=13+132+...+13nn3n+123=(13+132+...+13n)(113)(113)n3n+123=(1313n+1)23n3n+123=343+2n4×3n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com