All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 181360 by lapache last updated on 24/Nov/22
Calcul∑nk=0k(13)k=...
Answered by mahdipoor last updated on 24/Nov/22
way2:getf(x)=ex+e2x+e3x+...+ekxf(x)(1−ex)=ex−e(k+1)x⇒f(x)=ex−e(k+1)x1−ex⇒⇒dfdx=ex+2e2x+3e3x+...+kekxdfdx=(ex−(k+1)e(k+1)x)(1−ex)−(−ex)(ex−e(k+1)x)(1−ex)2=⇒x=ln3orex=13⇒dfdx(x=ln3)=13+232+....+k3kdfdx(x=ln3)=(13−k+13k+1)(23)−(−13)(13−13k+1)(23)2=34−2k+34×3k⇒⇒13+232+...+k3k=34−2k+34×3k
Answered by SEKRET last updated on 24/Nov/22
A=∑nk=0k3k=13+232+333+434+....+n3nA3=∑nk=0k3k+1=132+233+334+435+..+n3n+12A3=13+132+133+134+...+13n+n3n+1......
I⇒(13+232+333+...n3n)×(1−13)=13+232+...+n−13n−1+n3n−(132+233+...n−13n+n3n+1)=13+132+...+13n−n3n+1II⇒(13+132+...+13n)×(1−13)=13−13n+1I&II⇒∑nk=0k(13)k=(13+232+...+n3n)=(13+232+...+n3n)(1−13)(1−13)=13+132+...+13n−n3n+123=(13+132+...+13n)(1−13)(1−13)−n3n+123=(13−13n+1)23−n3n+123=34−3+2n4×3n
Terms of Service
Privacy Policy
Contact: info@tinkutara.com