All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 181403 by a.lgnaoui last updated on 24/Nov/22
RefertoQ181319∫x4+1x4+x+2dxx4+1x4+x+2=1+x2(x2+x+1)−x2(x2−x+1)=1+14[(2x+1)−1x2+x+1−14×(2x−1)+1(x2−x+1)=14×[log(x2+x+1)]′−14×(1[32(x+12)2]+1)−(14[log(x2−x+1)]′+14(1[32×(x−12]2+1))firstwith[32(x+12)]=u∫1u2+1du=arctg(u)andv=[32(x−12)]=v∫dv1+v2=arctg(v)...............
Answered by ARUNG_Brandon_MBU last updated on 24/Nov/22
I=∫x4+1x4+x2+1dx=∫(x4+x2+1)−x2x4+x2+1dx=∫(1−x2x4+x2+1)dx=x−∫x2x4+x2+1dx=x−12∫(x2+1)+(x2−1)x4+x2+1dx=x−12∫x2+1x4+x2+1dx−12∫x2−1x4+x2+1dx=x−12∫1+1x2x2+1+1x2dx−12∫1−1x2x2+1+1x2dx=x−12∫1+1x2(x−1x)2+3dx−12∫1−1x2(x+1x)2−1dx=x−123arctan[13(x−1x)]+12arcoth(x+1x)+C=x−36arctan(x2−1x3)+14ln∣x2+x+1x2−x+1∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com