All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 181618 by Mastermind last updated on 27/Nov/22
dydx+2xy=x2y(0)=3Solve.
Answered by hmr last updated on 27/Nov/22
multiplybothsidesofeq.toafunctionlikeμ(x).μ(x)dydx+2μ(x)xy=μ(x)x2trytoformtheLHSlikethis:ddx(μ(x)y)=dμdxy+μ(x)dydxsoblueonesshouldbeequal.dμdxy=2μ(x)xydμ/dxμ(x)=2xddx(ln∣μ(x)∣)=2xln∣μ(x)∣=x2+cμ(x)=±ecex2=Cex2C=1→μ(x)=ex2replaceμ(x)inequation.ddx(ex2y)=ex2x2ex2y=∫ex2x2dxy=∫ex2x2dx+cex2
Answered by ali009 last updated on 28/Nov/22
usingtheruleoflinearfirstordereqdydx+p(x)y=Q(x)y=1D(x)∫D(x)Q(x)dxD(x)=e∫p(x)dx=e∫2xdx=ex2y=1ex2(∫ex2x2dx+c)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com