Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 181618 by Mastermind last updated on 27/Nov/22

(dy/dx)+2xy=x^2                 y(0)=3    Solve    .

$$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2xy}=\mathrm{x}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{3} \\ $$$$ \\ $$$$\mathrm{Solve} \\ $$$$ \\ $$$$. \\ $$

Answered by hmr last updated on 27/Nov/22

multiply both sides of eq.  to a function like μ(x).  μ(x) (dy/dx) + 2μ(x) xy = μ(x) x^2     try to form the LHS like this:  (d/dx)(μ(x) y) = (dμ/dx) y + μ(x) (dy/dx)     so blue ones should be equal.  (dμ/dx) y = 2μ(x) xy   ((dμ/dx)/(μ(x))) = 2x  (d/dx)(ln∣μ(x)∣) = 2x  ln∣μ(x)∣ = x^2  + c  μ (x) = ±e^c  e^x^2   = C e^x^2    C = 1 → μ(x) = e^x^2      replace μ(x) in equation.  (d/dx)(e^x^2   y) = e^x^2   x^2   e^x^2   y = ∫e^x^2   x^2  dx  y = ((∫e^x^2   x^2  dx + c)/e^x^2  )

$${multiply}\:{both}\:{sides}\:{of}\:{eq}. \\ $$$${to}\:{a}\:{function}\:{like}\:\mu\left({x}\right). \\ $$$$\mu\left({x}\right)\:\frac{{dy}}{{dx}}\:+\:\mathrm{2}\mu\left({x}\right)\:{xy}\:=\:\mu\left({x}\right)\:{x}^{\mathrm{2}} \\ $$$$ \\ $$$${try}\:{to}\:{form}\:{the}\:{LHS}\:{like}\:{this}: \\ $$$$\frac{{d}}{{dx}}\left(\mu\left({x}\right)\:{y}\right)\:=\:\frac{{d}\mu}{{dx}}\:{y}\:+\:\mu\left({x}\right)\:\frac{{dy}}{{dx}}\: \\ $$$$ \\ $$$${so}\:{blue}\:{ones}\:{should}\:{be}\:{equal}. \\ $$$$\frac{{d}\mu}{{dx}}\:{y}\:=\:\mathrm{2}\mu\left({x}\right)\:{xy}\: \\ $$$$\frac{{d}\mu/{dx}}{\mu\left({x}\right)}\:=\:\mathrm{2}{x} \\ $$$$\frac{{d}}{{dx}}\left({ln}\mid\mu\left({x}\right)\mid\right)\:=\:\mathrm{2}{x} \\ $$$${ln}\mid\mu\left({x}\right)\mid\:=\:{x}^{\mathrm{2}} \:+\:{c} \\ $$$$\mu\:\left({x}\right)\:=\:\pm{e}^{{c}} \:{e}^{{x}^{\mathrm{2}} } \:=\:{C}\:{e}^{{x}^{\mathrm{2}} } \\ $$$${C}\:=\:\mathrm{1}\:\rightarrow\:\mu\left({x}\right)\:=\:{e}^{{x}^{\mathrm{2}} } \\ $$$$ \\ $$$${replace}\:\mu\left({x}\right)\:{in}\:{equation}. \\ $$$$\frac{{d}}{{dx}}\left({e}^{{x}^{\mathrm{2}} } \:{y}\right)\:=\:{e}^{{x}^{\mathrm{2}} } \:{x}^{\mathrm{2}} \\ $$$${e}^{{x}^{\mathrm{2}} } \:{y}\:=\:\int{e}^{{x}^{\mathrm{2}} } \:{x}^{\mathrm{2}} \:{dx} \\ $$$${y}\:=\:\frac{\int{e}^{{x}^{\mathrm{2}} } \:{x}^{\mathrm{2}} \:{dx}\:+\:{c}}{{e}^{{x}^{\mathrm{2}} } }\: \\ $$$$ \\ $$

Answered by ali009 last updated on 28/Nov/22

using the rule of linear first order eq  (dy/dx)+p(x)y=Q(x)  y=(1/(D(x)))∫D(x)Q(x)dx  D(x)=e^(∫p(x)dx) =e^(∫2xdx) =e^x^2    y=(1/e^x^2  )(∫e^x^2  x^2 dx+c)

$${using}\:{the}\:{rule}\:{of}\:{linear}\:{first}\:{order}\:{eq} \\ $$$$\frac{{dy}}{{dx}}+{p}\left({x}\right){y}={Q}\left({x}\right) \\ $$$${y}=\frac{\mathrm{1}}{{D}\left({x}\right)}\int{D}\left({x}\right){Q}\left({x}\right){dx} \\ $$$${D}\left({x}\right)={e}^{\int{p}\left({x}\right){dx}} ={e}^{\int\mathrm{2}{xdx}} ={e}^{{x}^{\mathrm{2}} } \\ $$$${y}=\frac{\mathrm{1}}{{e}^{{x}^{\mathrm{2}} } }\left(\int{e}^{{x}^{\mathrm{2}} } {x}^{\mathrm{2}} {dx}+{c}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com