Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 181644 by mathlove last updated on 28/Nov/22

prove that  lim_(x→∞)  (((1+(1/3)+(1/5)+∙∙∙∙+(1/(2x+1)))/(xln(√x))))^(ln(√x)) =2e^(γ/2)

$${prove}\:{that} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+\centerdot\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}}{{xln}\sqrt{{x}}}\right)^{{ln}\sqrt{{x}}} =\mathrm{2}{e}^{\frac{\gamma}{\mathrm{2}}} \: \\ $$$$ \\ $$

Answered by aleks041103 last updated on 28/Nov/22

Answered by aleks041103 last updated on 28/Nov/22

Σ_(k=1) ^(x+1) (1/(2k−1))=Σ_(k=1) ^(x+1) ((1/(2k−1))+(1/(2k))) −Σ_(k=1) ^(x+1) (1/(2k))=  =H(2x+2)−(1/2)H(x+1)=  =H(2x+1)+(1/(2x+2))−(1/2)H(x)+(1/(2(x+1)))=  =H(2x+1)−(1/2)H(x)  H(x)→ln(x)+γ  ⇒Σ_(k=1) ^(x+1) (1/(2k−1))→ln(2x+1)−(1/2)ln(x)+(γ/2)  ⇒L=lim_(x→∞) (((ln(2((√x))^2 +1)−ln((√x))+(γ/2))/(ln((√x)))))^(ln((√x))) =  =lim_(y→∞) (((ln(2y^2 +1)−ln(y)+γ/2)/(ln(y))))^(ln(y)) =  =lim_(y→∞) (1+((ln(2y^2 +1)−ln(y^2 )+γ/2)/(ln(y))))^(ln(y)) =  =lim_(y→∞) (1+((ln(2+y^(−2) )+γ/2)/(ln(y))))^(ln(y)) =  =exp(lim_(y→∞) (ln(2+y^(−2) )+γ/2))=  =e^((γ/2)+ln(2)) =2e^(γ/2)

$$\underset{{k}=\mathrm{1}} {\overset{{x}+\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}=\underset{{k}=\mathrm{1}} {\overset{{x}+\mathrm{1}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}{k}}\right)\:−\underset{{k}=\mathrm{1}} {\overset{{x}+\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}}= \\ $$$$={H}\left(\mathrm{2}{x}+\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}{H}\left({x}+\mathrm{1}\right)= \\ $$$$={H}\left(\mathrm{2}{x}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{H}\left({x}\right)+\frac{\mathrm{1}}{\mathrm{2}\left({x}+\mathrm{1}\right)}= \\ $$$$={H}\left(\mathrm{2}{x}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}{H}\left({x}\right) \\ $$$${H}\left({x}\right)\rightarrow{ln}\left({x}\right)+\gamma \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{{x}+\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\rightarrow{ln}\left(\mathrm{2}{x}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}\right)+\frac{\gamma}{\mathrm{2}} \\ $$$$\Rightarrow{L}=\underset{{x}\rightarrow\infty} {{lim}}\left(\frac{{ln}\left(\mathrm{2}\left(\sqrt{{x}}\right)^{\mathrm{2}} +\mathrm{1}\right)−{ln}\left(\sqrt{{x}}\right)+\frac{\gamma}{\mathrm{2}}}{{ln}\left(\sqrt{{x}}\right)}\right)^{{ln}\left(\sqrt{{x}}\right)} = \\ $$$$=\underset{{y}\rightarrow\infty} {{lim}}\left(\frac{{ln}\left(\mathrm{2}{y}^{\mathrm{2}} +\mathrm{1}\right)−{ln}\left({y}\right)+\gamma/\mathrm{2}}{{ln}\left({y}\right)}\right)^{{ln}\left({y}\right)} = \\ $$$$=\underset{{y}\rightarrow\infty} {{lim}}\left(\mathrm{1}+\frac{{ln}\left(\mathrm{2}{y}^{\mathrm{2}} +\mathrm{1}\right)−{ln}\left({y}^{\mathrm{2}} \right)+\gamma/\mathrm{2}}{{ln}\left({y}\right)}\right)^{{ln}\left({y}\right)} = \\ $$$$=\underset{{y}\rightarrow\infty} {{lim}}\left(\mathrm{1}+\frac{{ln}\left(\mathrm{2}+{y}^{−\mathrm{2}} \right)+\gamma/\mathrm{2}}{{ln}\left({y}\right)}\right)^{{ln}\left({y}\right)} = \\ $$$$={exp}\left(\underset{{y}\rightarrow\infty} {{lim}}\left({ln}\left(\mathrm{2}+{y}^{−\mathrm{2}} \right)+\gamma/\mathrm{2}\right)\right)= \\ $$$$={e}^{\frac{\gamma}{\mathrm{2}}+{ln}\left(\mathrm{2}\right)} =\mathrm{2}{e}^{\gamma/\mathrm{2}} \\ $$

Commented by aleks041103 last updated on 28/Nov/22

Commented by mathlove last updated on 28/Nov/22

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com