Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 181723 by Mastermind last updated on 29/Nov/22

(dy/dx)=((xy^2 +2y^3 )/(x^3 +x^2 y+xy^2 ))    Solve

dydx=xy2+2y3x3+x2y+xy2Solve

Answered by floor(10²Eta[1]) last updated on 29/Nov/22

let y=ux⇒y′=u′x+u  y′=((x^3 u^2 +2x^3 u^3 )/(x^3 +x^3 u+x^3 u^2 ))=u′x+u  ⇒((u^2 +2u^3 )/(1+u+u^2 ))−u=u′x  ⇒((u^3 −u)/(1+u+u^2 ))=(du/dx)x  ⇒(dx/x)=((1+u+u^2 )/(u^3 −u))du  ln(x)+C=∫((1+u+u^2 )/(u^3 −u))du=∫((1+u+u^2 )/(u(u−1)(u+1)))du  use partial fractions:  ln(x)+C=−∫(du/u)+(3/2)∫(du/(u−1))+(1/2)∫(du/(u+1))  =−ln(u)+(3/2)ln(u−1)+(1/2)ln(u+1)  =−ln(u)+ln(√((u−1)^3 ))+ln(√(u+1))  =ln(((√((u−1)^3 (u+1)))/u))=lnx+C  ⇒((√((u−1)^3 (u+1)))/u)=Cx  (((u−1)^3 (u+1))/u^2 )=C^2 x^2   u^4 −2u^3 −Cx^2 u^2 +2u−1=0  solve for u∴y=ux  note that if C=0⇒u=±1  y=±x which is a solution

lety=uxy=ux+uy=x3u2+2x3u3x3+x3u+x3u2=ux+uu2+2u31+u+u2u=uxu3u1+u+u2=dudxxdxx=1+u+u2u3uduln(x)+C=1+u+u2u3udu=1+u+u2u(u1)(u+1)duusepartialfractions:ln(x)+C=duu+32duu1+12duu+1=ln(u)+32ln(u1)+12ln(u+1)=ln(u)+ln(u1)3+lnu+1=ln((u1)3(u+1)u)=lnx+C(u1)3(u+1)u=Cx(u1)3(u+1)u2=C2x2u42u3Cx2u2+2u1=0solveforuy=uxnotethatifC=0u=±1y=±xwhichisasolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com