All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 181723 by Mastermind last updated on 29/Nov/22
dydx=xy2+2y3x3+x2y+xy2Solve
Answered by floor(10²Eta[1]) last updated on 29/Nov/22
lety=ux⇒y′=u′x+uy′=x3u2+2x3u3x3+x3u+x3u2=u′x+u⇒u2+2u31+u+u2−u=u′x⇒u3−u1+u+u2=dudxx⇒dxx=1+u+u2u3−uduln(x)+C=∫1+u+u2u3−udu=∫1+u+u2u(u−1)(u+1)duusepartialfractions:ln(x)+C=−∫duu+32∫duu−1+12∫duu+1=−ln(u)+32ln(u−1)+12ln(u+1)=−ln(u)+ln(u−1)3+lnu+1=ln((u−1)3(u+1)u)=lnx+C⇒(u−1)3(u+1)u=Cx(u−1)3(u+1)u2=C2x2u4−2u3−Cx2u2+2u−1=0solveforu∴y=uxnotethatifC=0⇒u=±1y=±xwhichisasolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com