All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 181794 by Shrinava last updated on 30/Nov/22
f(0)=0f(1)=e3f∈C2(R)f″(x)−5f′(x)+6f(x)=0,∀x∈RFind:Ω=limx→∞(1−1f(x))x
Answered by mr W last updated on 01/Dec/22
r2−5r+6=0(r−2)(r−3)=0r=2,3f(x)=C1e2x+C2e3xf(0)=C1+C2=0⇒C1=−C2f(1)=C1e2+C2e3=e3⇒C1+C2e=e⇒C2=ee−1=−C1⇒f(x)=ee−1(−e2x+e3x)Ω=limx→∞(1−1f(x))x=limx→∞(1−e−1e2x+1(ex−1))x=1
Commented by Shrinava last updated on 01/Dec/22
thankyoudearprofessorcool
Terms of Service
Privacy Policy
Contact: info@tinkutara.com