Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 181837 by mr W last updated on 01/Dec/22

find integers a>b>c>0 such that  (1/a)+(2/b)+(3/c)=1

findintegersa>b>c>0suchthat 1a+2b+3c=1

Commented bySEKRET last updated on 01/Dec/22

(2;5;30) (2;6;18) (2;7;14) (2;8;12)  (2;10;10) (2;12;9)(2;16;8)(2;28;7)  (3;4;18)(3;6;9)(3;12;6)(3;30;5)  (4;3;36)(4;4;12)(4;8;6)(5;4;10)  (5;10;5)(5;40;4)(15;6;5)(20;10;4)  (30;3;10)(36;9;4)(6;3;18)(6;4;9)  (6;6;6)(6;24;4)(8;4;8)(8;16;4)(10;5;6)  (12;3;2)(12;12;4)(14;4;7).....

(2;5;30)(2;6;18)(2;7;14)(2;8;12) (2;10;10)(2;12;9)(2;16;8)(2;28;7) (3;4;18)(3;6;9)(3;12;6)(3;30;5) (4;3;36)(4;4;12)(4;8;6)(5;4;10) (5;10;5)(5;40;4)(15;6;5)(20;10;4) (30;3;10)(36;9;4)(6;3;18)(6;4;9) (6;6;6)(6;24;4)(8;4;8)(8;16;4)(10;5;6) (12;3;2)(12;12;4)(14;4;7).....

Commented bymr W last updated on 01/Dec/22

only solutions with a>b>c>0 are   requested.

onlysolutionswitha>b>c>0are requested.

Answered by prakash jain last updated on 01/Dec/22

a=2  b=8  c=12

a=2 b=8 c=12

Commented bymr W last updated on 01/Dec/22

thanks for trying sir!  but only solutions with a>b>c>0 are   requested.

thanksfortryingsir! butonlysolutionswitha>b>c>0are requested.

Answered by MJS_new last updated on 01/Dec/22

a>b>c>0 ⇒ c>3  a=((bc)/(bc−3b−2c))  a>b ⇒ (c/(bc−3b−2c))>1∧c>3  ⇔  c<b<((3c)/(c−3))∧c>3 ⇒ c=4∧4<b<12 ∨ c=5∧5<b<7.5  not many possibilities to try out  ⇒  a=36∧b=9∧c=4  a=20∧b=10∧c=4  a=15∧b=6∧c=5  are the only solutions

a>b>c>0c>3 a=bcbc3b2c a>bcbc3b2c>1c>3 c<b<3cc3c>3c=44<b<12c=55<b<7.5 notmanypossibilitiestotryout a=36b=9c=4 a=20b=10c=4 a=15b=6c=5 aretheonlysolutions

Commented bymr W last updated on 02/Dec/22

thanks alot sir!

thanksalotsir!

Answered by mr W last updated on 02/Dec/22

a>b>c>0  ⇒(1/a)<(1/b)<(1/c)  1=(1/a)+(2/b)+(3/c)<(1/c)+(2/c)+(3/c)=(6/c)  ⇒c<6  (3/c)=1−(1/a)−(2/b)<1  ⇒c>3  ⇒c may only be 4 or 5.  with c=4:  (1/a)+(2/b)=1−(3/4)=(1/4)  (1/4)=(1/a)+(2/b)<(1/b)+(2/b)=(3/b)  ⇒b<12  (1/4)=(1/a)+(2/b)>(2/b)  ⇒b>8  ⇒b may only be 9, 10 or 11.  b=9: (1/a)=(1/4)−(2/9)=(1/(36)) ⇒a=36 ✓  b=10: (1/a)=(1/4)−(2/(10))=(1/(20)) ⇒a=20 ✓  b=11: (1/a)=(1/4)−(2/(11))=(7/(44)) ⇒a=((44)/7) ×  with c=5:  (1/a)+(2/b)=1−(3/5)=(2/5)  (2/5)=(1/a)+(2/b)<(1/b)+(2/b)=(3/b)  ⇒b<((15)/2)=7.5  (2/5)=(1/a)+(2/b)>(2/b)  ⇒b>5  ⇒b may only be 6 or 7.  b=6: (1/a)=(2/5)−(2/6)=(1/(15)) ⇒a=15 ✓  b=7: (1/a)=(2/5)−(2/7)=(4/(35)) ⇒a=((35)/4) ×  summary:  (a,b,c)=(36,9,4), (20,10,4), (15,6,5)

a>b>c>0 1a<1b<1c 1=1a+2b+3c<1c+2c+3c=6c c<6 3c=11a2b<1 c>3 cmayonlybe4or5. withc=4: 1a+2b=134=14 14=1a+2b<1b+2b=3b b<12 14=1a+2b>2b b>8 bmayonlybe9,10or11. b=9:1a=1429=136a=36 b=10:1a=14210=120a=20 b=11:1a=14211=744a=447× withc=5: 1a+2b=135=25 25=1a+2b<1b+2b=3b b<152=7.5 25=1a+2b>2b b>5 bmayonlybe6or7. b=6:1a=2526=115a=15 b=7:1a=2527=435a=354× summary: (a,b,c)=(36,9,4),(20,10,4),(15,6,5)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com