Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 181840 by srikanth2684 last updated on 01/Dec/22

∫_(−1) ^4 ln x dx

$$\underset{−\mathrm{1}} {\overset{\mathrm{4}} {\int}}{ln}\:{x}\:{dx} \\ $$

Commented by mr W last updated on 01/Dec/22

question is wrong.   for ln (x) to be defined, x>0 !

$${question}\:{is}\:{wrong}.\: \\ $$$${for}\:\mathrm{ln}\:\left({x}\right)\:{to}\:{be}\:{defined},\:{x}>\mathrm{0}\:! \\ $$

Commented by CElcedricjunior last updated on 01/Dec/22

∫_(−1) ^4 lnxdx=[xln∣x∣−x]_(−1) ^4 =+∞

$$\int_{−\mathrm{1}} ^{\mathrm{4}} \boldsymbol{{lnxdx}}=\left[\boldsymbol{{xln}}\mid\boldsymbol{{x}}\mid−{x}\right]_{−\mathrm{1}} ^{\mathrm{4}} =+\infty \\ $$

Commented by Frix last updated on 01/Dec/22

+∞ is wrong!  ∫(dx/x)=ln ∣x∣ +C  In this case the absolute value makes sense  because obviously the area between the  graph of y=(1/x) and the x−axis is the same  in both intervals [a, b] and [−b, −a] ⇒  ∫_(−r) ^(+r) (dx/x)=0∀r∈R despite of the singularity.  ∫ln x dx=−x(1−ln x)+C  In this case y=ln x is not defined for x≤0  and x, y∈R  If we let x, y∈C: x<0∧r=∣x∣ ⇔ x=re^(iπ)  and  ln x =ln r +πi ⇒  ∫_(−1) ^4 ln x dx=−5+8ln 2 +πi  [real (ln x) =ln ∣x∣; imag (ln x) =((π(1−sign x))/2)]

$$+\infty\:\mathrm{is}\:\mathrm{wrong}! \\ $$$$\int\frac{{dx}}{{x}}=\mathrm{ln}\:\mid{x}\mid\:+{C} \\ $$$$\mathrm{In}\:\mathrm{this}\:\mathrm{case}\:\mathrm{the}\:\mathrm{absolute}\:\mathrm{value}\:\mathrm{makes}\:\mathrm{sense} \\ $$$$\mathrm{because}\:\mathrm{obviously}\:\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{graph}\:\mathrm{of}\:{y}=\frac{\mathrm{1}}{{x}}\:\mathrm{and}\:\mathrm{the}\:{x}−\mathrm{axis}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{in}\:\mathrm{both}\:\mathrm{intervals}\:\left[{a},\:{b}\right]\:\mathrm{and}\:\left[−{b},\:−{a}\right]\:\Rightarrow \\ $$$$\underset{−{r}} {\overset{+{r}} {\int}}\frac{{dx}}{{x}}=\mathrm{0}\forall{r}\in\mathbb{R}\:\mathrm{despite}\:\mathrm{of}\:\mathrm{the}\:\mathrm{singularity}. \\ $$$$\int\mathrm{ln}\:{x}\:{dx}=−{x}\left(\mathrm{1}−\mathrm{ln}\:{x}\right)+{C} \\ $$$$\mathrm{In}\:\mathrm{this}\:\mathrm{case}\:{y}=\mathrm{ln}\:{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\mathrm{for}\:{x}\leqslant\mathrm{0} \\ $$$$\mathrm{and}\:{x},\:{y}\in\mathbb{R} \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{let}\:{x},\:{y}\in\mathbb{C}:\:{x}<\mathrm{0}\wedge{r}=\mid{x}\mid\:\Leftrightarrow\:{x}={r}\mathrm{e}^{\mathrm{i}\pi} \:\mathrm{and} \\ $$$$\mathrm{ln}\:{x}\:=\mathrm{ln}\:{r}\:+\pi\mathrm{i}\:\Rightarrow \\ $$$$\underset{−\mathrm{1}} {\overset{\mathrm{4}} {\int}}\mathrm{ln}\:{x}\:{dx}=−\mathrm{5}+\mathrm{8ln}\:\mathrm{2}\:+\pi\mathrm{i} \\ $$$$\left[\mathrm{real}\:\left(\mathrm{ln}\:{x}\right)\:=\mathrm{ln}\:\mid{x}\mid;\:\mathrm{imag}\:\left(\mathrm{ln}\:{x}\right)\:=\frac{\pi\left(\mathrm{1}−\mathrm{sign}\:{x}\right)}{\mathrm{2}}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com