Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 18185 by Tinkutara last updated on 16/Jul/17

Is this true or false?  acosA + bcosB + ccosC = ((abc)/(2R^2 ))

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{true}\:\mathrm{or}\:\mathrm{false}? \\ $$$${a}\mathrm{cos}{A}\:+\:{b}\mathrm{cos}{B}\:+\:{c}\mathrm{cos}{C}\:=\:\frac{{abc}}{\mathrm{2}{R}^{\mathrm{2}} } \\ $$

Commented by b.e.h.i.8.3.417@gmail.com last updated on 16/Jul/17

yes. it is true.  in triangle ABC,draw altitudes of  triangle.connecting foots of this altitudes,  makes a triangle that called as :altitudial  triangle of ABC.  let call altitudial triangle of ABC,by  MN^Δ P.in triangle MNP,we can easily  prove below relations:  1)∡M=π−2A,∡N=π−2B,∡P=π−2C  2)PN=a.cosA,PM=b.cosB,MN=c.cosC  3)R′=(R/2),r′=4R′.sin(M/2)sin(N/2)sin(P/2)=  =2R.cosA.cosB.cosC  4)S_(MNP) =2S_(ABC) .cosA.cosB.cosC  5)p′=4R′.cos(M/2).cos(N/2).cos(P/2)=  =2R.sinA.sinB.sinC=(S/R)  now,the LHS,in fact,is the premeter of  the altitudial triangle of ABC.in part  5,we show that:p′=(S/R),and so:  LHS=2p′=2.(S/R).but :  RHS=((4RS)/(2R^2 ))=2.(S/R).Hence:LHS=RHS.  note:  1)S_(ABC) =(1/2)ab.sinC=(1/2).2R.sinA.2R.sinB.sinC=  =2R^2 .ΠsinA  2)MN^2 =CM^2 +CN^2 −2.CM.CN.cosC=  =(b.cosC)^2 +(a.cosC)^2 −2abcos^2 C.cosC=  =(a^2 +b^2 −2ab.cosC).cos^2 C=c^2 .cos^2 C  ⇒MN=c.cosC.  3)S_(MNP) =(1/2).MN.NP.sinN=  =(1/2).c.cosC.a.cosA.sin(π−2B)=  =ac.cosA.cosC.sinB.cosB=  =((abc)/(2R)).cosA.cosB.cosC=2S.ΠcosA.  4)R′=((PN)/(2sinP))=((a.cosA)/(2sin(180−2A)))=  =((acosA)/(2×2sinA.cosA))=(a/(4sinA))=(R/2)

$${yes}.\:{it}\:{is}\:{true}. \\ $$$${in}\:{triangle}\:{ABC},{draw}\:{altitudes}\:{of} \\ $$$${triangle}.{connecting}\:{foots}\:{of}\:{this}\:{altitudes}, \\ $$$${makes}\:{a}\:{triangle}\:{that}\:{called}\:{as}\::{altitudial} \\ $$$${triangle}\:{of}\:{ABC}. \\ $$$${let}\:{call}\:{altitudial}\:{triangle}\:{of}\:{ABC},{by} \\ $$$${M}\overset{\Delta} {{N}P}.{in}\:{triangle}\:{MNP},{we}\:{can}\:{easily} \\ $$$${prove}\:{below}\:{relations}: \\ $$$$\left.\mathrm{1}\right)\measuredangle{M}=\pi−\mathrm{2}{A},\measuredangle{N}=\pi−\mathrm{2}{B},\measuredangle{P}=\pi−\mathrm{2}{C} \\ $$$$\left.\mathrm{2}\right){PN}={a}.{cosA},{PM}={b}.{cosB},{MN}={c}.{cosC} \\ $$$$\left.\mathrm{3}\right){R}'=\frac{{R}}{\mathrm{2}},{r}'=\mathrm{4}{R}'.{sin}\frac{{M}}{\mathrm{2}}{sin}\frac{{N}}{\mathrm{2}}{sin}\frac{{P}}{\mathrm{2}}= \\ $$$$=\mathrm{2}{R}.{cosA}.{cosB}.{cosC} \\ $$$$\left.\mathrm{4}\right){S}_{{MNP}} =\mathrm{2}{S}_{{ABC}} .{cosA}.{cosB}.{cosC} \\ $$$$\left.\mathrm{5}\right){p}'=\mathrm{4}{R}'.{cos}\frac{{M}}{\mathrm{2}}.{cos}\frac{{N}}{\mathrm{2}}.{cos}\frac{{P}}{\mathrm{2}}= \\ $$$$=\mathrm{2}{R}.{sinA}.{sinB}.{sinC}=\frac{{S}}{{R}} \\ $$$${now},{the}\:{LHS},{in}\:{fact},{is}\:{the}\:{premeter}\:{of} \\ $$$${the}\:{altitudial}\:{triangle}\:{of}\:{ABC}.{in}\:{part} \\ $$$$\mathrm{5},{we}\:{show}\:{that}:{p}'=\frac{{S}}{{R}},{and}\:{so}: \\ $$$${LHS}=\mathrm{2}{p}'=\mathrm{2}.\frac{{S}}{{R}}.{but}\:: \\ $$$${RHS}=\frac{\mathrm{4}{RS}}{\mathrm{2}{R}^{\mathrm{2}} }=\mathrm{2}.\frac{{S}}{{R}}.{Hence}:{LHS}={RHS}. \\ $$$${note}: \\ $$$$\left.\mathrm{1}\right){S}_{{ABC}} =\frac{\mathrm{1}}{\mathrm{2}}{ab}.{sinC}=\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{2}{R}.{sinA}.\mathrm{2}{R}.{sinB}.{sinC}= \\ $$$$=\mathrm{2}{R}^{\mathrm{2}} .\Pi{sinA} \\ $$$$\left.\mathrm{2}\right){MN}^{\mathrm{2}} ={CM}^{\mathrm{2}} +{CN}^{\mathrm{2}} −\mathrm{2}.{CM}.{CN}.{cosC}= \\ $$$$=\left({b}.{cosC}\right)^{\mathrm{2}} +\left({a}.{cosC}\right)^{\mathrm{2}} −\mathrm{2}{abcos}^{\mathrm{2}} {C}.{cosC}= \\ $$$$=\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}.{cosC}\right).{cos}^{\mathrm{2}} {C}={c}^{\mathrm{2}} .{cos}^{\mathrm{2}} {C} \\ $$$$\Rightarrow{MN}={c}.{cosC}. \\ $$$$\left.\mathrm{3}\right){S}_{{MNP}} =\frac{\mathrm{1}}{\mathrm{2}}.{MN}.{NP}.{sinN}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.{c}.{cosC}.{a}.{cosA}.{sin}\left(\pi−\mathrm{2}{B}\right)= \\ $$$$={ac}.{cosA}.{cosC}.{sinB}.{cosB}= \\ $$$$=\frac{{abc}}{\mathrm{2}{R}}.{cosA}.{cosB}.{cosC}=\mathrm{2}{S}.\Pi{cosA}. \\ $$$$\left.\mathrm{4}\right){R}'=\frac{{PN}}{\mathrm{2}{sinP}}=\frac{{a}.{cosA}}{\mathrm{2}{sin}\left(\mathrm{180}−\mathrm{2}{A}\right)}= \\ $$$$=\frac{{acosA}}{\mathrm{2}×\mathrm{2}{sinA}.{cosA}}=\frac{{a}}{\mathrm{4}{sinA}}=\frac{{R}}{\mathrm{2}} \\ $$

Commented by Tinkutara last updated on 17/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com