Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 181875 by mr W last updated on 01/Dec/22

if a+b+c=0, find the maximum of  ((∣a+2b+3c∣)/( (√(a^2 +b^2 +c^2 )))).

ifa+b+c=0,findthemaximumofa+2b+3ca2+b2+c2.

Commented by mr W last updated on 01/Dec/22

Q181318 reposted, asking for more  solutions.

Q181318reposted,askingformoresolutions.

Commented by SEKRET last updated on 01/Dec/22

  what happened to previos solutions

whathappenedtopreviossolutions

Commented by mr W last updated on 01/Dec/22

they are there, nothing happened.

theyarethere,nothinghappened.

Answered by SEKRET last updated on 01/Dec/22

max ((√(2 )) )

max(2)

Commented by mr W last updated on 01/Dec/22

please show your solution.

pleaseshowyoursolution.

Answered by SEKRET last updated on 01/Dec/22

   c = −(b+a)    a+2b−3(b+a)= −(b+2a)  a^2 +b^2 +(a+b)^2 =2a^2 +2b^2 +2ab   ((∣b+2a∣)/( (√2) ∙(√(a^2 +b^2 +ab))))           b= ax       ((∣a∣∙∣x+2∣)/( (√2) ∙∣a∣∙(√(x^2 +x+1))))= ((∣x+2∣)/( (√2)∙(√(x^2 +x+1))))=f(x)   f ′ (x)=0      ((−3x)/(2(√(2 ))∙(√((x^2 +x+1)^3 )))) =0    x=0    f(0)=(2/( (√2))) = (√2)

c=(b+a)a+2b3(b+a)=(b+2a)a2+b2+(a+b)2=2a2+2b2+2abb+2a2a2+b2+abb=axax+22ax2+x+1=x+22x2+x+1=f(x)f(x)=03x22(x2+x+1)3=0x=0f(0)=22=2

Commented by mr W last updated on 01/Dec/22

thanks!

thanks!

Answered by mr W last updated on 02/Dec/22

I) regular method  b=−(a+c)  f=((∣a+2b+3c∣)/( (√(a^2 +b^2 +c^2 ))))  =((∣a−2a−2c+3c∣)/( (√(a^2 +(a+c)^2 +c^2 ))))  =((∣c−a∣)/( (√(2(a^2 +ac+c^2 )))))  =((∣k−1∣)/( (√(2(1+k+k^2 )))))    with k=(c/a)  =((∣k−1∣)/( (√(2((k−1)^2 +3(k−1)+3)))))   =((∣u∣)/( (√(2(u^2 +3u+3)))))    with u=k−1  =(1/( (√(2((3/u^2 )+(3/u)+1)))))  =(1/( (√(6[((1/u)+(1/2))^2 +(1/(12))]))))  ≤(1/( (√(6×(1/(12))))))=(√2)  ⇒maximum =(√2)   at u=−2=k−1=(c/a)−1 ⇒c+a=0, b=0

Missing \left or extra \rightb=(a+c)f=a+2b+3ca2+b2+c2=a2a2c+3ca2+(a+c)2+c2=ca2(a2+ac+c2)=k12(1+k+k2)withk=ca=k12((k1)2+3(k1)+3)=u2(u2+3u+3)withu=k1=12(3u2+3u+1)=16[(1u+12)2+112]16×112=2maximum=2atu=2=k1=ca1c+a=0,b=0

Commented by SEKRET last updated on 01/Dec/22

   super

super

Answered by mr W last updated on 02/Dec/22

II) geometric method  image we have a plane with following  equation:  ax+by+cz=0  this plane passes through the origin  A(0,0,0).  since a+b+c=0, it means the plane  passes also through the pointB(1,1,1).  we know ((∣a+2b+3c∣)/( (√(a^2 +b^2 +c^2 )))) represents the  distance from the point P(1,2,3) to the  plane ax+by+cz=0.   now we only need to find the largest  distance from the point P(1,2,3) to the  plane ax+by+cz=0.   since the plane passes through the  points A(0,0,0) and B(1,1,1), the  largest distance from point P to the   plane is the distance from point P to   the line AB.  AB=(1,1,1)  AP=(1,2,3)  AP×AB=(1,2,3)×(1,1,1)=(1,2,1)  d=((∣AP×AB∣)/(∣AB∣))=((√(1^2 +2^2 +1^2 ))/( (√(1^2 +1^2 +1^2 ))))=((√6)/( (√3)))=(√2)  that means maximum of ((∣a+2b+3c∣)/( (√(a^2 +b^2 +c^2 ))))  is (√2).

Missing \left or extra \rightimagewehaveaplanewithfollowingequation:ax+by+cz=0thisplanepassesthroughtheoriginA(0,0,0).sincea+b+c=0,itmeanstheplanepassesalsothroughthepointB(1,1,1).weknowa+2b+3ca2+b2+c2representsthedistancefromthepointP(1,2,3)totheplaneax+by+cz=0.nowweonlyneedtofindthelargestdistancefromthepointP(1,2,3)totheplaneax+by+cz=0.sincetheplanepassesthroughthepointsA(0,0,0)andB(1,1,1),thelargestdistancefrompointPtotheplaneisthedistancefrompointPtothelineAB.AB=(1,1,1)AP=(1,2,3)AP×AB=(1,2,3)×(1,1,1)=(1,2,1)d=AP×ABAB=12+22+1212+12+12=63=2thatmeansmaximumofa+2b+3ca2+b2+c2is2.

Commented by mr W last updated on 01/Dec/22

Commented by mr W last updated on 02/Dec/22

alternative:  cos θ=(((1,2,3)∙(1,1,1))/( (√((1^2 +1^2 +1^2 )(1^2 +2^2 +3^2 )))))=((√6)/( (√7)))  sin θ=(1/( (√7)))  d=AP sin θ=(√(14))×(1/( (√7)))=(√2)

alternative:cosθ=(1,2,3)(1,1,1)(12+12+12)(12+22+32)=67sinθ=17d=APsinθ=14×17=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com