Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 181897 by Acem last updated on 01/Dec/22

Answered by mr W last updated on 02/Dec/22

T_k =(k^2 /(k^2 −10k+50))=(k^2 /((k−5)^2 +5^2 ))  T_5 =(5^2 /5^2 )=1  T_1 +T_9 =(((5−4)^2 )/(4^2 +5^2 ))+(((5+4)^2 )/(4^2 +5^2 ))=((2(4^2 +5^2 ))/(4^2 +5^2 ))=2  T_2 +T_8 =(((5−3)^2 )/(3^2 +5^2 ))+(((5+3)^2 )/(3^2 +5^2 ))=((2(3^2 +5^2 ))/(3^2 +5^2 ))=2  T_3 +T_7 =...=2  T_4 +T_6 =...=2  ⇒T_1 +T_2 +...+T_9 =1+4×2=9 ✓

Tk=k2k210k+50=k2(k5)2+52T5=5252=1T1+T9=(54)242+52+(5+4)242+52=2(42+52)42+52=2T2+T8=(53)232+52+(5+3)232+52=2(32+52)32+52=2T3+T7=...=2T4+T6=...=2T1+T2+...+T9=1+4×2=9

Commented by Acem last updated on 02/Dec/22

Very well! Thanks

Verywell!Thanks

Answered by Acem last updated on 02/Dec/22

(1^2 /(1^2 −10+50))= ((2.1^2 )/(1^2 +1−20+100))=  ((2.1^2 )/(1^2 + (10−1)^2 )) ...i  (9^2 /(9^2 −90+50))= ((2 (10−1)^2 )/((10−1)^2 +(10−1)^2 −20(10−1)+100))                      = ((2 (10−1)^2 )/((10−1)^2 +[10−(10−1)]^2 ))= ((2 (10−1)^2 )/(1^2 +(10−1)^2 )) ...ii     i+ii = ((2 [1+(10−1)^2 ])/(1+(10−1)^2 ))= 2   Then ((2n^2 )/(n^2 +(10−n)^2 ))+ ((2 (10−n)^2 )/(n^2 +(10−n)^2 ))= 2 ∀n∈ N, n> 0     we have n= 9 : n=1 to 9 ; Terms= {1, 2, ..., 9}   Sum= 4×2_(1,9& 2,8,...) + T_5 = 9 ; T_5 = 1

121210+50=2.1212+120+100=2.1212+(101)2...i929290+50=2(101)2(101)2+(101)220(101)+100=2(101)2(101)2+[10(101)]2=2(101)212+(101)2...iii+ii=2[1+(101)2]1+(101)2=2Then2n2n2+(10n)2+2(10n)2n2+(10n)2=2nN,n>0wehaven=9:n=1to9;Terms={1,2,...,9}Sum=4×21,9&2,8,...+T5=9;T5=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com