Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 181902 by Acem last updated on 01/Dec/22

Answered by Rasheed.Sindhi last updated on 02/Dec/22

(x^2 +xy+y^2 )(√(x^2 +y^2 )) =185....(i)  (x^2 −xy+y^2 )(√(x^2 +y^2 )) =65.....(ii)                                                   [(√(x^2 +y^2 )) ≠0]  (i)/(ii): ((x^2 +xy+y^2 )/(x^2 −xy+y^2 ))=((185)/(65))=((37)/(13))  ((x^2 +xy+y^2 −x^2 +xy−y^2 )/(x^2 +xy+y^2 +x^2 −xy+y^2 ))=((37−13)/(37+13))      [Componendo-Dividendo property]  ((2xy)/(2x^2 +2y^2 ))=((37−13)/(37+13))  ((xy)/(x^2 +y^2 ))=((12)/(25))  12x^2 −25xy+12y^2 =0  ((12x)/(25y))+((12y)/(25x))=1  ((12)/(25))(t+(1/t))=1  t+(1/t)=((25)/(12))  12t^2 −25t+12=0  t=((25±(√(625−576)))/(24))=((25±7)/(24))=(4/3),(3/4)  (x/y)=(4/3),(3/4)  3x=4y ∨ 4x=3y  y=((3x)/4),((4x)/3)    y=((3x)/4):  (i)⇒( x^2 +x(((3x)/4))+(((3x)/4))^2  )(√(x^2 +(((3x)/4))^2 )) =185  ((16x^2 +12x^2 +9x^2 )/(16))(√((16x^2 +9x^2 )/(16))) =185  ((37x^2 )/(16))∙((5∣x∣)/4) =185  ∣x∣^3 =((185∙64)/(5∙37))=4^3 ⇒∣x∣=4⇒x=±4  ⇒y=((3(±4))/4)=±3  y=((4x)/3):  (i)⇒(x^2 +x(((4x)/3))+(((4x)/3))^2 )(√(x^2 +(((4x)/3))^2 )) =185        ((9x^2 +12x^2 +16x^2 )/9)(√((9x^2 +16x^2 )/9)) =185     ((37x^2 )/9)∙((5∣x∣)/3)=185      ∣x∣^3 =((185×27)/(37×5))⇒∣x∣=3⇒x=±3  ⇒y=((4(±3))/3)=±4  (x,y)={(4,3),(3,4),(−4,−3),(−3,−4)}

(x2+xy+y2)x2+y2=185....(i)(x2xy+y2)x2+y2=65.....(ii)[x2+y20](i)/(ii):x2+xy+y2x2xy+y2=18565=3713x2+xy+y2x2+xyy2x2+xy+y2+x2xy+y2=371337+13[ComponendoDividendoproperty]2xy2x2+2y2=371337+13xyx2+y2=122512x225xy+12y2=012x25y+12y25x=11225(t+1t)=1t+1t=251212t225t+12=0t=25±62557624=25±724=43,34xy=43,343x=4y4x=3yy=3x4,4x3y=3x4:(i)(x2+x(3x4)+(3x4)2)x2+(3x4)2=18516x2+12x2+9x21616x2+9x216=18537x2165x4=185x3=18564537=43⇒∣x∣=4x=±4y=3(±4)4=±3y=4x3:(i)(x2+x(4x3)+(4x3)2)x2+(4x3)2=1859x2+12x2+16x299x2+16x29=18537x295x3=185x3=185×2737×5⇒∣x∣=3x=±3y=4(±3)3=±4(x,y)={(4,3),(3,4),(4,3),(3,4)}

Answered by mr W last updated on 02/Dec/22

u=(√(x^2 +y^2 ))  v=xy  (u^2 +v)u=185   ...(i)  (u^2 −v)u=65   ...(ii)  2u^3 =185+65=250  ⇒u=5=(√(x^2 +y^2 ))  ⇒v=((185)/5)−5^2 =12=xy  x^2 +y^2 =25 ⇒(x+y)^2 =25+2×12=49  ⇒x+y=±7  ⇒(x,y)=(3,4) or (4,3) or (−3,−4) or (−4,−3)

u=x2+y2v=xy(u2+v)u=185...(i)(u2v)u=65...(ii)2u3=185+65=250u=5=x2+y2v=185552=12=xyx2+y2=25(x+y)2=25+2×12=49x+y=±7(x,y)=(3,4)or(4,3)or(3,4)or(4,3)

Commented by Acem last updated on 02/Dec/22

Neat Solution!

NeatSolution!

Answered by Rasheed.Sindhi last updated on 02/Dec/22

(x^2 +xy+y^2 )(√(x^2 +y^2 )) =185....(i)  (x^2 −xy+y^2 )(√(x^2 +y^2 )) =65....(ii)                                                       [(√(x^2 +y^2 )) ≠0]    (i)×13  & (ii)×37  13(x^2 +xy+y^2 )(√(x^2 +y^2 )) =2405...(iii)  37(x^2 −xy+y^2 )(√(x^2 +y^2 )) =2405...(iv)  (iii)&(iv):  13(x^2 +xy+y^2 )=37(x^2 −xy+y^2 )  12x^2 −25xy+12y^2 =0  ((12x^2 )/(25xy))−1+((12y^2 )/(25xy))=0  ((12)/(25))((x/y)+(y/x))=1  t+(1/t)=((25)/(12))  12t^2 −25t+12=0  t=((25±(√(625−576)))/(24))=((25±7)/(24))=(4/3),(3/4)  (x/y)=(4/3),(3/4)  3x=4y ∨ 4x=3y  y= ((3x)/4),((4x)/3)  y=((3x)/4):  (i)⇒(x^2 +x(((3x)/4))+(((3x)/4))^2 )(√(x^2 +(((3x)/4))^2 )) =185        ((16x^2 +12x^2 +9x^2 )/(16))(√((16x^2 +9x^2 )/(16))) =185  ((37x^2 )/(16))∙((5∣x∣)/4)=185  ∣x∣^3 =64  x=±4⇒y=((3(±4))/4)=±3  y= ((4x)/3):  (i)⇒(x^2 +x(((4x)/3))+(((4x)/3))^2 )(√(x^2 +(((4x)/3))^2 )) =185        ((9x^2 +12x^2 +16x^2 )/9)(√((9x^2 +16x^2 )/9)) =185     ((37x^2 )/9)∙((5∣x∣)/3)=185     ∣x∣^3 =27⇒x=±3    ⇒y=((4(±3))/3)=±4  (x,y)={(3,4),(4,3),(−3,−4),(−4,−3)}

(x2+xy+y2)x2+y2=185....(i)(x2xy+y2)x2+y2=65....(ii)[x2+y20](i)×13&(ii)×3713(x2+xy+y2)x2+y2=2405...(iii)37(x2xy+y2)x2+y2=2405...(iv)(iii)&(iv):13(x2+xy+y2)=37(x2xy+y2)12x225xy+12y2=012x225xy1+12y225xy=01225(xy+yx)=1t+1t=251212t225t+12=0t=25±62557624=25±724=43,34xy=43,343x=4y4x=3yy=3x4,4x3y=3x4:(i)(x2+x(3x4)+(3x4)2)x2+(3x4)2=18516x2+12x2+9x21616x2+9x216=18537x2165x4=185x3=64x=±4y=3(±4)4=±3y=4x3:(i)(x2+x(4x3)+(4x3)2)x2+(4x3)2=1859x2+12x2+16x299x2+16x29=18537x295x3=185x3=27x=±3y=4(±3)3=±4(x,y)={(3,4),(4,3),(3,4),(4,3)}

Commented by Acem last updated on 02/Dec/22

Mr. Rasheed thank you for your efforts!   Anyway, if you didn′t assume new variable, you   can solve it directly without multiply the   formulas by 13, 37   As you see if we sum i, ii we will save a lot of work     (x^2 +y^2 ) (√(x^2 +y^2 ))= 125 ⇒ x^2 +y^2 = 25 ... iii   iii ∧ ii: 25−xy= 13 ⇒ xy= 12 ... iv   Now, (x+y)^2  =  x^2 +y^2 + 2xy= 49   ⇒ x+y= ±7 ... v   iv ∧ v:   ∴  { ((x+y= 7)),(( xy= 12)) :}   or   { ((x+y= −7)),(( xy= 12)) :}       ⇒ S={(4,3), (3,4), (−4, −3), (−3,−4)}

Mr.Rasheedthankyouforyourefforts!Anyway,ifyoudidntassumenewvariable,youcansolveitdirectlywithoutmultiplytheformulasby13,37Asyouseeifwesumi,iiwewillsavealotofwork(x2+y2)x2+y2=125x2+y2=25...iiiiiiii:25xy=13xy=12...ivNow,(x+y)2=x2+y2+2xy=49x+y=±7...vivv:{x+y=7xy=12or{x+y=7xy=12S={(4,3),(3,4),(4,3),(3,4)}

Commented by Rasheed.Sindhi last updated on 02/Dec/22

Agree sir, that′s more efficient way!

Agreesir,thatsmoreefficientway!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com