Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182045 by Emrice last updated on 03/Dec/22

  ∫_(π/6) ^(π/3)  (1/(1+(tanx)^(2013) )) dx = ?

π6π311+(tanx)2013dx=?

Commented by Frix last updated on 03/Dec/22

f(x)=(1/(1+tan^n  x)) is symmetric to the point ((π/4); (1/2)) ⇒  ∫_((π/4)−a) ^((π/4)+a) (dx/(1+tan^n  x))=a∀n∈N ⇒  answer is (π/(12))

f(x)=11+tannxissymmetrictothepoint(π4;12)π4+aπ4adx1+tannx=anNanswerisπ12

Answered by Ar Brandon last updated on 03/Dec/22

I=∫_(π/6) ^(π/3) (1/(1+(tanx)^(2013) ))dx  I=∫_(π/6) ^(π/3) (((cosx)^(2013) )/((cosx)^(2013) +(sinx)^(2013) ))dx   ...eqn(i)  I=∫_(π/6) ^(π/3) (((sinx)^(2013) )/((cosx)^(2013) +(sinx)^(2013) ))dx   ...eqn(ii)  eqn(i)+eqn(ii)  2I=∫_(π/6) ^(π/3) (((cosx)^(2013) +(sinx)^(2013) )/((cosx)^(2013) +(sinx)^(2013) ))dx=∫_(π/6) ^(π/3) dx  ⇒I=(1/2)[x]_(π/6) ^(π/3) =(1/2)((π/3)−(π/6))=(1/2)((π/6))= determinant (((π/(12))))

I=π6π311+(tanx)2013dxI=π6π3(cosx)2013(cosx)2013+(sinx)2013dx...eqn(i)I=π6π3(sinx)2013(cosx)2013+(sinx)2013dx...eqn(ii)eqn(i)+eqn(ii)2I=π6π3(cosx)2013+(sinx)2013(cosx)2013+(sinx)2013dx=π6π3dxI=12[x]π6π3=12(π3π6)=12(π6)=π12

Answered by SEKRET last updated on 04/Dec/22

  ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx    ∫_(𝛑/6) ^( (𝛑/3)) (1/(1+(tanx)^(2013) ))dx=  I     ∫_(𝛑/6) ^( (𝛑/3)) (1/(1+(tan((𝛑/3)+(𝛑/6)−x))^(2013) ))dx=  =∫_(𝛑/6) ^(𝛑/3) (1/(1+(1/((tanx)^(2013) )))) dx=∫_(𝛑/6) ^( (π/3)) (( (tanx)^(2013) +1−1)/(1+(tanx)^(2013) ))dx=    ∫_(π/6) ^( (𝛑/3)) 1 dx −∫_(𝛑/6) ^( (𝛑/3)) (1/(1+(tanx)^(2013) ))dx= I       x  /_(𝛑/6) ^(  (𝛑/3))  − I  =  I         (𝛑/6)  =  2I       I= (𝛑/(12))   ABDULAZIZ   ABDUVALIYEV

abf(x)dx=abf(a+bx)dxπ6π311+(tanx)2013dx=Iπ6π311+(tan(π3+π6x))2013dx==π6π311+1(tanx)2013dx=π6π3(tanx)2013+111+(tanx)2013dx=π6π31dxπ6π311+(tanx)2013dx=Ix/π6π3I=Iπ6=2II=π12ABDULAZIZABDUVALIYEV

Terms of Service

Privacy Policy

Contact: info@tinkutara.com