All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 182045 by Emrice last updated on 03/Dec/22
∫π6π311+(tanx)2013dx=?
Commented by Frix last updated on 03/Dec/22
f(x)=11+tannxissymmetrictothepoint(π4;12)⇒∫π4+aπ4−adx1+tannx=a∀n∈N⇒answerisπ12
Answered by Ar Brandon last updated on 03/Dec/22
I=∫π6π311+(tanx)2013dxI=∫π6π3(cosx)2013(cosx)2013+(sinx)2013dx...eqn(i)I=∫π6π3(sinx)2013(cosx)2013+(sinx)2013dx...eqn(ii)eqn(i)+eqn(ii)2I=∫π6π3(cosx)2013+(sinx)2013(cosx)2013+(sinx)2013dx=∫π6π3dx⇒I=12[x]π6π3=12(π3−π6)=12(π6)=π12
Answered by SEKRET last updated on 04/Dec/22
∫abf(x)dx=∫abf(a+b−x)dx∫π6π311+(tanx)2013dx=I∫π6π311+(tan(π3+π6−x))2013dx==∫π6π311+1(tanx)2013dx=∫π6π3(tanx)2013+1−11+(tanx)2013dx=∫π6π31dx−∫π6π311+(tanx)2013dx=Ix/π6π3−I=Iπ6=2II=π12ABDULAZIZABDUVALIYEV
Terms of Service
Privacy Policy
Contact: info@tinkutara.com