Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182149 by Acem last updated on 05/Dec/22

Commented by Acem last updated on 05/Dec/22

 Find α

$$\:{Find}\:\alpha \\ $$

Answered by HeferH last updated on 05/Dec/22

 By construction:  40° − α = α − 20°   α = 30°

$$\:{By}\:{construction}: \\ $$$$\mathrm{40}°\:−\:\alpha\:=\:\alpha\:−\:\mathrm{20}° \\ $$$$\:\alpha\:=\:\mathrm{30}° \\ $$

Commented by Acem last updated on 05/Dec/22

 30 is correct, but how?

$$\:\mathrm{30}\:{is}\:{correct},\:{but}\:{how}? \\ $$

Answered by HeferH last updated on 05/Dec/22

Commented by Acem last updated on 05/Dec/22

 Thanks! i′ll check your method very soon   Thank you

$$\:{Thanks}!\:{i}'{ll}\:{check}\:{your}\:{method}\:{very}\:{soon} \\ $$$$\:{Thank}\:{you} \\ $$

Answered by a.lgnaoui last updated on 06/Dec/22

△ABD   ∡ABD=180−(80+20)=80 ⇒AD=BD  AB^2  =2AD^2 (1−cos 20)      AD^2 =((AB^2 )/(2(1−cos 20)))                          (1)  △ACD     CD=AB⇒   AD^2 =AC^2 +AB^2 +2AB×ACcos α    △ABC    ABsin 80=ACsin α    (2)   AD^2 =((AB^2 sin^2 80)/(sin^2 α))+AB^2 +((2AB^2 )/(sin α))×sin 80cos α  =AB^2 (((sin^2 80)/(sin^2 α))+((2sin 80cos α)/(sin α))+1)  =AB^2 [(((sin^2  80)/(sin^2  α))+((2sin 80cos α)/(sin α))+1]=((AB^2 )/(2(1−cos 20)))  (1/(2(1−cos 20)))=((sin^2 80(1+tan^2 α))/(tan^2 α))+((2sin 80)/(tan α))+1)  (1/(2(1−cos 20)))=[((sin^2 80(1+tan^2 α)+2sin 80tan α+tan^2 α)/(tan^2 α))]          =[(((sin^2 80+1)tan^2 α+2sin 80tan α+sin^2 80)/(tan^2 α))]  posons  t=tan α  t^2 =2(1−cos 20)[(sin^2 80+1)t^2 +2sin 80t+sin^2 80]  0=[2sin^2 80(1−cos 20)−2cos 20+1]t^2 +(2sin 80)t+sin^2 80  t^2 +((2sin 80)/(1+2sin^2 80(1−cos 20)−2cos 20))t+((sin^2 80)/(1+2sin^2 80(1−cos 20)−2cos 20))=0    sin 80=0,98480775             cos 20=0,939692620785  sin^2 80=0,969846310393    t^2 +((1,969615506)/(0,762407463))t+((0,96984631039)/(0,762407463))    t^2 +2,5834158258  t+1,272081764  t=0,662082972  t=3,842665708  α=tan^(−1) (t)={33,5  ;  75,5}  Angle  α=33,5°

$$\bigtriangleup\mathrm{ABD}\:\:\:\measuredangle\mathrm{ABD}=\mathrm{180}−\left(\mathrm{80}+\mathrm{20}\right)=\mathrm{80}\:\Rightarrow\mathrm{AD}=\mathrm{BD} \\ $$$$\mathrm{AB}^{\mathrm{2}} \:=\mathrm{2AD}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)\:\:\:\: \\ $$$$\mathrm{AD}^{\mathrm{2}} =\frac{\mathrm{AB}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\bigtriangleup\mathrm{ACD}\:\:\:\:\:\mathrm{CD}=\mathrm{AB}\Rightarrow\:\:\:\mathrm{AD}^{\mathrm{2}} =\mathrm{AC}^{\mathrm{2}} +\mathrm{AB}^{\mathrm{2}} +\mathrm{2AB}×\mathrm{ACcos}\:\alpha\:\: \\ $$$$\bigtriangleup\mathrm{ABC}\:\:\:\:\mathrm{ABsin}\:\mathrm{80}=\mathrm{ACsin}\:\alpha\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\:\mathrm{AD}^{\mathrm{2}} =\frac{\mathrm{AB}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{80}}{\mathrm{sin}\:^{\mathrm{2}} \alpha}+\mathrm{AB}^{\mathrm{2}} +\frac{\mathrm{2AB}^{\mathrm{2}} }{\mathrm{sin}\:\alpha}×\mathrm{sin}\:\mathrm{80cos}\:\alpha \\ $$$$=\mathrm{AB}^{\mathrm{2}} \left(\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}}{\mathrm{sin}\:^{\mathrm{2}} \alpha}+\frac{\mathrm{2sin}\:\mathrm{80cos}\:\alpha}{\mathrm{sin}\:\alpha}+\mathrm{1}\right) \\ $$$$=\mathrm{AB}^{\mathrm{2}} \left[\left(\frac{\mathrm{sin}^{\mathrm{2}} \:\mathrm{80}}{\mathrm{sin}^{\mathrm{2}} \:\alpha}+\frac{\mathrm{2sin}\:\mathrm{80cos}\:\alpha}{\mathrm{sin}\:\alpha}+\mathrm{1}\right]=\frac{\mathrm{AB}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)}\right. \\ $$$$\left.\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)}=\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \alpha\right)}{\mathrm{tan}\:^{\mathrm{2}} \alpha}+\frac{\mathrm{2sin}\:\mathrm{80}}{\mathrm{tan}\:\alpha}+\mathrm{1}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)}=\left[\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \alpha\right)+\mathrm{2sin}\:\mathrm{80tan}\:\alpha+\mathrm{tan}\:^{\mathrm{2}} \alpha}{\mathrm{tan}\:^{\mathrm{2}} \alpha}\right] \\ $$$$\:\:\:\:\:\:\:\:=\left[\frac{\left(\mathrm{sin}^{\mathrm{2}} \mathrm{80}+\mathrm{1}\right)\mathrm{tan}\:^{\mathrm{2}} \alpha+\mathrm{2sin}\:\mathrm{80tan}\:\alpha+\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}}{\mathrm{tan}\:^{\mathrm{2}} \alpha}\right] \\ $$$${posons}\:\:{t}=\mathrm{tan}\:\alpha \\ $$$${t}^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)\left[\left(\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}+\mathrm{1}\right){t}^{\mathrm{2}} +\mathrm{2sin}\:\mathrm{80}{t}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}\right] \\ $$$$\mathrm{0}=\left[\mathrm{2sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)−\mathrm{2cos}\:\mathrm{20}+\mathrm{1}\right]{t}^{\mathrm{2}} +\left(\mathrm{2sin}\:\mathrm{80}\right){t}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{80} \\ $$$${t}^{\mathrm{2}} +\frac{\mathrm{2sin}\:\mathrm{80}}{\mathrm{1}+\mathrm{2sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)−\mathrm{2cos}\:\mathrm{20}}{t}+\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}}{\mathrm{1}+\mathrm{2sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)−\mathrm{2cos}\:\mathrm{20}}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{sin}\:\mathrm{80}=\mathrm{0},\mathrm{98480775}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:\mathrm{20}=\mathrm{0},\mathrm{939692620785} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{80}=\mathrm{0},\mathrm{969846310393} \\ $$$$ \\ $$$${t}^{\mathrm{2}} +\frac{\mathrm{1},\mathrm{969615506}}{\mathrm{0},\mathrm{762407463}}{t}+\frac{\mathrm{0},\mathrm{96984631039}}{\mathrm{0},\mathrm{762407463}} \\ $$$$ \\ $$$$\boldsymbol{{t}}^{\mathrm{2}} +\mathrm{2},\mathrm{5834158258}\:\:\boldsymbol{{t}}+\mathrm{1},\mathrm{272081764} \\ $$$${t}=\mathrm{0},\mathrm{662082972} \\ $$$${t}=\mathrm{3},\mathrm{842665708} \\ $$$$\alpha=\mathrm{tan}^{−\mathrm{1}} \left({t}\right)=\left\{\mathrm{33},\mathrm{5}\:\:;\:\:\mathrm{75},\mathrm{5}\right\} \\ $$$${Angle}\:\:\alpha=\mathrm{33},\mathrm{5}°\:\:\:\: \\ $$$$ \\ $$

Commented by a.lgnaoui last updated on 06/Dec/22

look at graphe  α=33,5

$${look}\:{at}\:{graphe} \\ $$$$\alpha=\mathrm{33},\mathrm{5} \\ $$

Commented by a.lgnaoui last updated on 06/Dec/22

Commented by Acem last updated on 06/Dec/22

 Monsieur Ignaoui, merci beaucoup pour partage′   Il est possible qu′il y ait eu une erreur lors   du calcul, l′angle est 30°    Vous pouvez ve′rifier la solution selon la   me′thode Euclidienne ci−dessous

$$\:{Monsieur}\:{Ignaoui},\:{merci}\:{beaucoup}\:{pour}\:{partage}' \\ $$$$\:{Il}\:{est}\:{possible}\:{qu}'{il}\:{y}\:{ait}\:{eu}\:{une}\:{erreur}\:{lors} \\ $$$$\:{du}\:{calcul},\:{l}'{angle}\:{est}\:\mathrm{30}°\: \\ $$$$\:{Vous}\:{pouvez}\:{ve}'{rifier}\:{la}\:{solution}\:{selon}\:{la} \\ $$$$\:{me}'{thode}\:{Euclidienne}\:{ci}−{dessous} \\ $$

Commented by a.lgnaoui last updated on 06/Dec/22

apres verification de calculs  t^2 +((4sin 80(1−cos 20))/(2sin^2 80(1−cos 20)−2cos 20+1))t+((2sin^2 80(1−cos 20))/(2sin^2 80(1−cos 20)−2cos 20+1))  t^2 −0,3115980757584 t−0,1534321003521  {_(t2=−0,5315043867363) ^(t_1 =  +0,5773502691266)   soit     α=29,99999    donc  α=30  est solution    autre=−28(exclu)

$${apres}\:{verification}\:{de}\:{calculs} \\ $$$${t}^{\mathrm{2}} +\frac{\mathrm{4sin}\:\mathrm{80}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)}{\mathrm{2sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)−\mathrm{2cos}\:\mathrm{20}+\mathrm{1}}{t}+\frac{\mathrm{2sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)}{\mathrm{2sin}\:^{\mathrm{2}} \mathrm{80}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{20}\right)−\mathrm{2cos}\:\mathrm{20}+\mathrm{1}} \\ $$$${t}^{\mathrm{2}} −\mathrm{0},\mathrm{3115980757584}\:{t}−\mathrm{0},\mathrm{1534321003521} \\ $$$$\left\{_{{t}\mathrm{2}=−\mathrm{0},\mathrm{5315043867363}} ^{{t}_{\mathrm{1}} =\:\:+\mathrm{0},\mathrm{5773502691266}} \right. \\ $$$${soit}\:\:\:\:\:\alpha=\mathrm{29},\mathrm{99999} \\ $$$$\:\:{donc}\:\:\alpha=\mathrm{30}\:\:{est}\:{solution} \\ $$$$ \\ $$$${autre}=−\mathrm{28}\left({exclu}\right) \\ $$

Answered by Acem last updated on 06/Dec/22

Commented by Acem last updated on 06/Dec/22

 Monsieur Ignaoui   Les deux triangles ACD, PAB sont congrus

$$\:{Monsieur}\:{Ignaoui} \\ $$$$\:{Les}\:{deux}\:{triangles}\:{ACD},\:{PAB}\:{sont}\:{congrus} \\ $$$$ \\ $$

Commented by a.lgnaoui last updated on 06/Dec/22

je verifie les calculs

$${je}\:{verifie}\:{les}\:{calculs} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com