Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182192 by mr W last updated on 05/Dec/22

Commented by mr W last updated on 05/Dec/22

find the smallest area of inscribed  right−angle triangle in a given  triangle with sides a,b,c. (a≥b≥c)

findthesmallestareaofinscribedrightangletriangleinagiventrianglewithsidesa,b,c.(abc)

Answered by mr W last updated on 06/Dec/22

Commented by mr W last updated on 06/Dec/22

BD=((p sin (β+θ))/(sin β))  DC=((q sin (γ+(π/2)−θ))/(sin γ))=((q cos (γ−θ))/(sin γ))  ((p sin (β+θ))/(sin β))+((q cos (γ−θ))/(sin γ))=a  ((p(sin β cos θ+cos β sin θ))/(sin β))+((q(cos γ cos θ+sin γ sin θ))/(sin γ))=a  (p/a)(cos θ+((sin θ)/(tan β)))+(q/a)(((cos θ)/(tan γ))+sin θ)=1  ξ(cos θ+((sin θ)/(tan β)))+η(((cos θ)/(tan γ))+sin θ)=1  ξu+ηv=1  S=((pq)/2)=((ξηa^2 )/2)=(((ξu)(ηv)a^2 )/(2uv))=((((√((ξu)(ηv))))^2 a^2 )/(2uv))                           ≤(((ξu+ηv)^2 a^2 )/(8uv))=(a^2 /(8uv))  maximum (a^2 /(8uv)) at ξu=ηv=(1/2)  S=(a^2 /(8uv))=(a^2 /(8(cos θ+((sin θ)/(tan β)))(((cos θ)/(tan γ))+sin θ)))  Ψ=(cos θ+((sin θ)/(tan β)))(((cos θ)/(tan γ))+sin θ)  (dΨ/dθ)=(−sin θ+((cos θ)/(tan β)))(((cos θ)/(tan γ))+sin θ)+(cos θ+((sin θ)/(tan β)))(−((sin θ)/(tan γ))+cos θ)=0  −((sin θ cos θ)/(tan γ))+((cos^2  θ)/(tan β tan γ))−sin^2  θ+((sin θ cos θ)/(tan β))−((sin θ cos θ)/(tan γ))−((sin^2  θ)/(tan β tan γ))+cos^2  θ+((sin θ cos θ)/(tan β))=0  tan 2θ(((tan β−tan γ)/(1+tan β tan γ)))=1  tan 2θ tan (β−γ)=1  2θ+β−γ=(π/2)  ⇒θ=(π/4)−((β−γ)/2)

BD=psin(β+θ)sinβDC=qsin(γ+π2θ)sinγ=qcos(γθ)sinγpsin(β+θ)sinβ+qcos(γθ)sinγ=ap(sinβcosθ+cosβsinθ)sinβ+q(cosγcosθ+sinγsinθ)sinγ=apa(cosθ+sinθtanβ)+qa(cosθtanγ+sinθ)=1ξ(cosθ+sinθtanβ)+η(cosθtanγ+sinθ)=1ξu+ηv=1S=pq2=ξηa22=(ξu)(ηv)a22uv=((ξu)(ηv))2a22uv(ξu+ηv)2a28uv=a28uvmaximuma28uvatξu=ηv=12S=a28uv=a28(cosθ+sinθtanβ)(cosθtanγ+sinθ)Ψ=(cosθ+sinθtanβ)(cosθtanγ+sinθ)dΨdθ=(sinθ+cosθtanβ)(cosθtanγ+sinθ)+(cosθ+sinθtanβ)(sinθtanγ+cosθ)=0sinθcosθtanγ+cos2θtanβtanγsin2θ+sinθcosθtanβsinθcosθtanγsin2θtanβtanγ+cos2θ+sinθcosθtanβ=0tan2θ(tanβtanγ1+tanβtanγ)=1tan2θtan(βγ)=12θ+βγ=π2θ=π4βγ2

Commented by mr W last updated on 06/Dec/22

Commented by mr W last updated on 07/Dec/22

ΔDEF is the right angled triangle  with smallest area.  AD=((√(bc(b+c+a)(b+c−a)))/(b+c))  DE=DF=((sin (α/2)(√(bc(b+c+a)(b+c−a))))/((b+c)sin ((π/4)+(α/2))))     =((sin (α/2)(√(2bc(b+c+a)(b+c−a))))/((b+c)(sin (α/2)+cos (α/2))))     =(((√(1−cos α))(√(bc(b+c+a)(b+c−a))))/((b+c)(√(1+sin α))))  S_(min) =((bc(b+c+a)(b+c−a)(1−cos α))/(2(b+c)^2 (1+sin α)))  ⇒S_(min) =(((((2Δ)/(b+c)))^2 )/(1+((2Δ)/(bc))))  with Δ=area of ΔABC.  Δ=((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)

ΔDEFistherightangledtrianglewithsmallestarea.AD=bc(b+c+a)(b+ca)b+cDE=DF=sinα2bc(b+c+a)(b+ca)(b+c)sin(π4+α2)=sinα22bc(b+c+a)(b+ca)(b+c)(sinα2+cosα2)=1cosαbc(b+c+a)(b+ca)(b+c)1+sinαSmin=bc(b+c+a)(b+ca)(1cosα)2(b+c)2(1+sinα)Smin=(2Δb+c)21+2ΔbcwithΔ=areaofΔABC.Δ=(a+b+c)(a+b+c)(ab+c)(a+bc)4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com