Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 18223 by Arnab Maiti last updated on 17/Jul/17

prove that ∫_0 ^( π) ((x tanx)/(tanx+secx))dx=(π/2)(π−2)

$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{x}\:\mathrm{tanx}}{\mathrm{tanx}+\mathrm{secx}}\mathrm{dx}=\frac{\pi}{\mathrm{2}}\left(\pi−\mathrm{2}\right) \\ $$

Answered by alex041103 last updated on 17/Jul/17

First we will integrate by parts  u=x    dv=((tan x)/(tan x + sec x))  du=dx  Now  ((tan x)/(tan x + sec x)) = ((tan x(sec x − tan x))/(sec^2 x − tan^2 x))=  =tan x(sec x − tan x)=  =sec x tan x − tan^2 x  So v=sec x − tan x + x  Now we integrate   ∫_0 ^( π) ((x tanx)/(tanx+secx))dx=  ∫_0 ^( π) x(sec x tan x − tan^2 x)dx=  =x(sec x − tan x + x)_0 ^π  − ∫_0 ^( π) (sec x − tan x + x)dx  =π(π−1)−[ln∣sec x + tan x∣+ln∣cos x∣+(x^2 /2)]_0 ^π =  =π^2 −π−[ln∣1+sin x∣+(x^2 /2)]_0 ^π =  =(π^2 /2)−π=(π/2)(π−2)  ⇒∫_0 ^( π) ((x tan x)/(sec x + tan x))dx = (π/2)(π−2)

$${First}\:{we}\:{will}\:{integrate}\:{by}\:{parts} \\ $$$${u}={x}\:\:\:\:{dv}=\frac{{tan}\:{x}}{{tan}\:{x}\:+\:{sec}\:{x}} \\ $$$${du}={dx} \\ $$$${Now} \\ $$$$\frac{{tan}\:{x}}{{tan}\:{x}\:+\:{sec}\:{x}}\:=\:\frac{{tan}\:{x}\left({sec}\:{x}\:−\:{tan}\:{x}\right)}{{sec}^{\mathrm{2}} {x}\:−\:{tan}^{\mathrm{2}} {x}}= \\ $$$$={tan}\:{x}\left({sec}\:{x}\:−\:{tan}\:{x}\right)= \\ $$$$={sec}\:{x}\:{tan}\:{x}\:−\:{tan}^{\mathrm{2}} {x} \\ $$$${So}\:{v}={sec}\:{x}\:−\:{tan}\:{x}\:+\:{x} \\ $$$${Now}\:{we}\:{integrate}\: \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{x}\:\mathrm{tanx}}{\mathrm{tanx}+\mathrm{secx}}\mathrm{dx}= \\ $$$$\int_{\mathrm{0}} ^{\:\pi} {x}\left({sec}\:{x}\:{tan}\:{x}\:−\:{tan}^{\mathrm{2}} {x}\right){dx}= \\ $$$$={x}\left({sec}\:{x}\:−\:{tan}\:{x}\:+\:{x}\right)_{\mathrm{0}} ^{\pi} \:−\:\int_{\mathrm{0}} ^{\:\pi} \left({sec}\:{x}\:−\:{tan}\:{x}\:+\:{x}\right){dx} \\ $$$$=\pi\left(\pi−\mathrm{1}\right)−\left[{ln}\mid{sec}\:{x}\:+\:{tan}\:{x}\mid+{ln}\mid{cos}\:{x}\mid+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\pi} = \\ $$$$=\pi^{\mathrm{2}} −\pi−\left[{ln}\mid\mathrm{1}+{sin}\:{x}\mid+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\pi} = \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}−\pi=\frac{\pi}{\mathrm{2}}\left(\pi−\mathrm{2}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\pi} \frac{{x}\:{tan}\:{x}}{{sec}\:{x}\:+\:{tan}\:{x}}{dx}\:=\:\frac{\pi}{\mathrm{2}}\left(\pi−\mathrm{2}\right) \\ $$$$ \\ $$

Commented by Arnab Maiti last updated on 17/Jul/17

Thank you.  please solve your this question  ∫_0 ^( 1) ((x^4 (1−x)^4 )/(1+x^2 ))dx

$$\mathrm{Thank}\:\mathrm{you}. \\ $$$$\mathrm{please}\:\mathrm{solve}\:\mathrm{your}\:\mathrm{this}\:\mathrm{question} \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{x}^{\mathrm{4}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Commented by alex041103 last updated on 17/Jul/17

is it Q.17463

$${is}\:{it}\:{Q}.\mathrm{17463} \\ $$

Commented by alex041103 last updated on 17/Jul/17

you can see the answer and solution   at Q.17463

$${you}\:{can}\:{see}\:{the}\:{answer}\:{and}\:{solution}\: \\ $$$${at}\:{Q}.\mathrm{17463} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com