All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 182374 by rs4089 last updated on 08/Dec/22
Commented by Rasheed.Sindhi last updated on 08/Dec/22
a=10,b=13,n=3197ORa=13,b=10,n=3197
Answered by Rasheed.Sindhi last updated on 09/Dec/22
n=a3+b3=(a+b)(a2−ab+b2)You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math modeand23isthesmallestprimefactorofa3+b3∴a+b=23witha2−ab+b2hasnoprimefactorlessthanorequalto23Note:By{a0,b0}wemean(a0,b0)or(b0,a0).AlsoweknowtIf(a0,b0)issolutionsothe(b0,a0).Case:{a,b}={1,22}a2−ab+b2=463=463✓Case:{a,b}={2,21}a2−ab+b2=403=13<23×31×Case:{a,b}={3,20}a2−ab+b2=349=349✓Case:{a,b}={4,19}a2−ab+b2=301=7<23×43×Case:{a,b}={5,18}a2−ab+b2=259=7<23×37Case:{a,b}={6,17}a2−ab+b2=223=223✓Case:{a,b}={7,16}a2−ab+b2=193=193✓Case:{a,b}={8,15}a2−ab+b2=169=13<23×13Case:{a,b}={9,14}a2−ab+b2=151=151✓Case:{a,b}={10,13}−a2−ab+b2=139=139−✓Case:{a,b}={11,12}a2−ab+b2=133=7<23×19Inunderlinedcasea2−ab+b2hasnoprimefactor⩽23andalso139theleastnumber.Hence23×139=3197isleastvalueofnand{a,b}={10,13}n=a3+b3=(a+b)(a2−ab+b2)=23⋅139=3197
Answered by Rasheed.Sindhi last updated on 11/Dec/22
n=a3+b3;a,b∈NSmallestprimefactorofn=23a,b,n=?ifnisthesmllest.−Leta3+b3=23pwherep(>23)∈Pandthepistheleast(a+b)(a2−ab+b2)=23pa+b=23∧a2−ab+b2=pIf(a0,b0)satisfiesthen(b0,a0)alsodoes.b=23−a∧a2−a(23−a)+(23−a)2=p>23a2−23a+a2+a2−46a+529>233a2−69a+529>23∧3a2−69a+529∈PLetf(a)=3a2−69a+529f(1)=463∈P✓f(2)=403∉Pf(3)=349∈P✓f(4)=301∉Pf(5)=259∉Pf(6)=223∈P✓f(7)=193∈P✓f(8)=169∉Pf(9)=151∈P✓f(10)=139∈P✓theleastf(11)=133∉Pa=10⇒b=23−10=13n=a3+b3=(a+b)(a2−ab+b2)=23.139=3197
Terms of Service
Privacy Policy
Contact: info@tinkutara.com