Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 182374 by rs4089 last updated on 08/Dec/22

Commented by Rasheed.Sindhi last updated on 08/Dec/22

a=10,b=13,n=3197                     OR  a=13,b=10,n=3197

a=10,b=13,n=3197ORa=13,b=10,n=3197

Answered by Rasheed.Sindhi last updated on 09/Dec/22

n=a^3 +b^3 =(a+b)(a^2 −ab+b^2 )  ∵ a+b≤a^2 −ab+b^2  [see Q#182379]      and 23 is the smallest prime factor       of a^3 +b^3   ∴ a+b=23 with a^2 −ab+b^2 has no         prime factor less than or equal to         23  Note: By {a_0 ,b_0 } we mean (a_0 ,b_0 ) or (b_0 ,a_0 ).  Also we knowt If (a_0 ,b_(0 ) ) is solution  so the (b_0 ,a_0 ).  Case:{a,b}={1,22}                a^2 −ab+b^2 =463=463 ✓  Case:{a,b}={2,21}                a^2 −ab+b^2 =403=13_(<23) ×31 ×  Case:{a,b}={3,20}                a^2 −ab+b^2 =349=349 ✓  Case:{a,b}={4,19}                a^2 −ab+b^2 =301= 7_(<23)  ×43 ×  Case:{a,b}={5,18}                a^2 −ab+b^2 =259=7_(<23) ×37  Case:{a,b}={6,17}                a^2 −ab+b^2 =223=223 ✓  Case:{a,b}={7,16}                a^2 −ab+b^2 =193=193 ✓  Case:{a,b}={8,15}                a^2 −ab+b^2 =169=13_(<23) ×13  Case:{a,b}={9,14}                a^2 −ab+b^2 =151=151 ✓  Case:{a,b}={10,13}_(−)                 a^2 −ab+b^2 =139=139_(−)  ✓  Case:{a,b}={11,12}                a^2 −ab+b^2 =133=7_(<23) ×19  In underlined case a^2 −ab+b^2  has  no prime factor≤23 and also 139  the least number.  Hence 23×139=3197 is least value  of n and {a,b}={10,13}  n=a^3 +b^3 =(a+b)(a^2 −ab+b^2 )=23∙139=3197

n=a3+b3=(a+b)(a2ab+b2)You can't use 'macro parameter character #' in math modeand23isthesmallestprimefactorofa3+b3a+b=23witha2ab+b2hasnoprimefactorlessthanorequalto23Note:By{a0,b0}wemean(a0,b0)or(b0,a0).AlsoweknowtIf(a0,b0)issolutionsothe(b0,a0).Case:{a,b}={1,22}a2ab+b2=463=463Case:{a,b}={2,21}a2ab+b2=403=13<23×31×Case:{a,b}={3,20}a2ab+b2=349=349Case:{a,b}={4,19}a2ab+b2=301=7<23×43×Case:{a,b}={5,18}a2ab+b2=259=7<23×37Case:{a,b}={6,17}a2ab+b2=223=223Case:{a,b}={7,16}a2ab+b2=193=193Case:{a,b}={8,15}a2ab+b2=169=13<23×13Case:{a,b}={9,14}a2ab+b2=151=151Case:{a,b}={10,13}a2ab+b2=139=139Case:{a,b}={11,12}a2ab+b2=133=7<23×19Inunderlinedcasea2ab+b2hasnoprimefactor23andalso139theleastnumber.Hence23×139=3197isleastvalueofnand{a,b}={10,13}n=a3+b3=(a+b)(a2ab+b2)=23139=3197

Answered by Rasheed.Sindhi last updated on 11/Dec/22

n=a^3 +b^3 ; a,b∈N  Smallest prime factor of n =23  a,b,n=? if n is the smllest.                    _(−)   Let a^3 +b^3 =23p   where p(>23)∈P  and the p is the least       (a+b)(a^2 −ab+b^2 )=23p     a+b=23 ∧ a^2 −ab+b^2 =p  If (a_0 ,b_0 ) satisfies then (b_0 ,a_0 ) also does.      b=23−a ∧ a^2 −a(23−a)+(23−a)^2 =p>23        a^2 −23a+a^2 +a^2 −46a+529>23    3a^2 −69a+529>23 ∧ 3a^2 −69a+529∈P  Let f(a)= 3a^2 −69a+529  f(1)=463∈P✓  f(2)=403∉P  f(3)=349∈P✓  f(4)=301∉P  f(5)=259∉P  f(6)=223∈P✓  f(7)=193∈P✓  f(8)=169∉P  f(9)=151∈P✓  f(10)=139∈P✓the least  f(11)=133∉P  a=10⇒b=23−10=13  n=a^3 +b^3 =(a+b)(a^2 −ab+b^2 )=23.139=3197

n=a3+b3;a,bNSmallestprimefactorofn=23a,b,n=?ifnisthesmllest.Leta3+b3=23pwherep(>23)Pandthepistheleast(a+b)(a2ab+b2)=23pa+b=23a2ab+b2=pIf(a0,b0)satisfiesthen(b0,a0)alsodoes.b=23aa2a(23a)+(23a)2=p>23a223a+a2+a246a+529>233a269a+529>233a269a+529PLetf(a)=3a269a+529f(1)=463Pf(2)=403Pf(3)=349Pf(4)=301Pf(5)=259Pf(6)=223Pf(7)=193Pf(8)=169Pf(9)=151Pf(10)=139Ptheleastf(11)=133Pa=10b=2310=13n=a3+b3=(a+b)(a2ab+b2)=23.139=3197

Terms of Service

Privacy Policy

Contact: info@tinkutara.com