Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 18243 by ajfour last updated on 17/Jul/17

Commented by ajfour last updated on 17/Jul/17

If    z=∣z∣(e^(i𝛗) cos θ+jsin θ)  z_(𝛗+△𝛗) =∣z∣(e^(i𝛗+i△𝛗) cos θ+jsin θ)  z^(θ+△θ)  =∣z∣[e^(i𝛗) cos (θ+△θ)+jsin (θ+△θ)]  Then prove :   (i)z^(θ+△θ) =(cos △θ)z+(sin △θ)(∂z/∂θ)  (ii)z_(𝛗+△𝛗) =(cos △𝛗)z+      (sin △𝛗)(∂z/∂𝛗)+j(1−cos △𝛗)sin θ  (iii)  i^2 =−1  ;  find  j^2    Prove z_(𝛗+△𝛗) ^(θ+△θ) =(cos △θ)z_(𝛗+△𝛗) +                             (sin △θ)((∂z/∂θ))_(𝛗+△𝛗)  .

Ifz=∣z(eiϕcosθ+jsinθ)zϕ+ϕ=∣z(eiϕ+iϕcosθ+jsinθ)zθ+θ=∣z[eiϕcos(θ+θ)+jsin(θ+θ)]Thenprove:(i)zθ+θ=(cosθ)z+(sinθ)zθ(ii)zϕ+ϕ=(cosϕ)z+(sinϕ)zϕ+j(1cosϕ)sinθ(iii)i2=1;findj2Provezϕ+ϕθ+θ=(cosθ)zϕ+ϕ+(sinθ)(zθ)ϕ+ϕ.

Commented by ajfour last updated on 09/Jul/18

3D-complex numbers

3Dcomplexnumbers

Terms of Service

Privacy Policy

Contact: info@tinkutara.com