Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182432 by SANOGO last updated on 09/Dec/22

∫_R (t^2 /((t^2 +a^2 )^(n+1) ))dt =? /  a≠o , nεN^∗

$$\int_{{R}} \frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }{dt}\:=?\:/\:\:{a}\neq{o}\:,\:{n}\epsilon{N}^{\ast} \\ $$

Answered by dre23 last updated on 10/Dec/22

t=∣a∣s  =∫_(−∞) ^∞ ((s^2 ∣a∣)/(a^(2n) (1+s^2 )^(n+1) ))ds,s=tg(z)  =((2∣a∣)/a^(2n) )∫_0 ^(π/2) sin^2 (z)cos^(2n) (z)dz=A  β(x,y)=2∫_0 ^(π/2) cos^(2x−1) (t)sin^(2y−1) (t)dt  A=((∣a∣)/a^(2n) )β(2n+(1/2),1+(1/2))=((∣a∣)/a^(2n) ).((Γ(2n+(1/2))Γ(1+(1/2)))/(Γ(2n+2)))  =((∣a∣[Π_(k=0) ^(2n−1) (k+(1/2))]Γ((1/2)).(1/2)Γ((1/2)))/(a^(2n) (2n+1)!))  =((π∣a∣Π_(k=0) ^n (2k+1))/(2^(2n+1) a^(2n) (2n+1)!))=((π∣a∣)/(2^(2n+1) a^(2n) 2^n n!))  =((π∣a∣)/(2^(3n+1) a^(2n) .n!))

$${t}=\mid{a}\mid{s} \\ $$$$=\int_{−\infty} ^{\infty} \frac{{s}^{\mathrm{2}} \mid{a}\mid}{{a}^{\mathrm{2}{n}} \left(\mathrm{1}+{s}^{\mathrm{2}} \right)^{{n}+\mathrm{1}} }{ds},{s}={tg}\left({z}\right) \\ $$$$=\frac{\mathrm{2}\mid{a}\mid}{{a}^{\mathrm{2}{n}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({z}\right){cos}^{\mathrm{2}{n}} \left({z}\right){dz}=\boldsymbol{{A}} \\ $$$$\beta\left({x},{y}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{x}−\mathrm{1}} \left({t}\right){sin}^{\mathrm{2}{y}−\mathrm{1}} \left(\boldsymbol{{t}}\right)\boldsymbol{{dt}} \\ $$$${A}=\frac{\mid{a}\mid}{{a}^{\mathrm{2}{n}} }\beta\left(\mathrm{2}{n}+\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mid{a}\mid}{{a}^{\mathrm{2}{n}} }.\frac{\Gamma\left(\mathrm{2}{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}{n}+\mathrm{2}\right)} \\ $$$$=\frac{\mid{a}\mid\left[\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\prod}}\left({k}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right]\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right).\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{{a}^{\mathrm{2}{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$=\frac{\pi\mid{a}\mid\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}+\mathrm{1}\right)}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} {a}^{\mathrm{2}{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)!}=\frac{\pi\mid{a}\mid}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} {a}^{\mathrm{2}{n}} \mathrm{2}^{{n}} {n}!} \\ $$$$=\frac{\pi\mid{a}\mid}{\mathrm{2}^{\mathrm{3}{n}+\mathrm{1}} {a}^{\mathrm{2}{n}} .{n}!} \\ $$$$ \\ $$

Commented by SANOGO last updated on 11/Dec/22

merci

$${merci} \\ $$

Commented by dre23 last updated on 14/Dec/22

je vous en Prie

$${je}\:{vous}\:{en}\:{Prie} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com