Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182461 by HeferH last updated on 09/Dec/22

Let x be a positive integer multiple of 17  that satisfies the inequality:   0 < ((5(x − 120))/x) < 1   Find the value of x.

Letxbeapositiveintegermultipleof17 thatsatisfiestheinequality: 0<5(x120)x<1 Findthevalueofx.

Answered by mr W last updated on 09/Dec/22

x=17k  0<((5(17k−120))/(17k))<1  0<85k−600<17k  600<85k ⇒k>((600)/(85)) ⇒k≥8  68k<600 ⇒k<((600)/(68)) ⇒k≤8  ⇒k=8 ⇒x=17×8=136 ✓

x=17k 0<5(17k120)17k<1 0<85k600<17k 600<85kk>60085k8 68k<600k<60068k8 k=8x=17×8=136

Answered by MJS_new last updated on 09/Dec/22

x=17n  0<((85n−600)/(17n))<1  0<85n−600<17n  600<85n<17n+600  ((120)/(17))<n<(n/5)+((120)/(17))  7.05...<n<(n/5)+7.05...  n_(min) =8 and because of 9>(9/5)+7.05... it′s the  only solution  ⇒ x=8×17=136

x=17n 0<85n60017n<1 0<85n600<17n 600<85n<17n+600 12017<n<n5+12017 7.05...<n<n5+7.05... nmin=8andbecauseof9>95+7.05...itsthe onlysolution x=8×17=136

Terms of Service

Privacy Policy

Contact: info@tinkutara.com