Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182681 by Acem last updated on 12/Dec/22

 Solve (√(39− 10 a −a^2 )) + (√(9−a^2 )) = 2 (√(14))   ; a∈ R^(+★)    @Mr. Rasheed, yesterday i solved it on a draft paper   When i came today to write it down on   the notebook i got into a maze, do you have   an easy way to deal with? “if you have time”   i lost that paper, and this formula makes me   laugh at myself, it′s for 13 y/o “confused face”    Sure Every friend can share!

$$\:{Solve}\:\sqrt{\mathrm{39}−\:\mathrm{10}\:{a}\:−{a}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\:\mathrm{2}\:\sqrt{\mathrm{14}}\:\:\:;\:{a}\in\:\mathbb{R}^{+\bigstar} \\ $$$$\:@{Mr}.\:{Rasheed},\:{yesterday}\:{i}\:{solved}\:{it}\:{on}\:{a}\:{draft}\:{paper} \\ $$$$\:{When}\:{i}\:{came}\:{today}\:{to}\:{write}\:{it}\:{down}\:{on} \\ $$$$\:{the}\:{notebook}\:{i}\:{got}\:{into}\:{a}\:{maze},\:{do}\:{you}\:{have} \\ $$$$\:{an}\:{easy}\:{way}\:{to}\:{deal}\:{with}?\:``{if}\:{you}\:{have}\:{time}'' \\ $$$$\:{i}\:{lost}\:{that}\:{paper},\:{and}\:{this}\:{formula}\:{makes}\:{me} \\ $$$$\:{laugh}\:{at}\:{myself},\:{it}'{s}\:{for}\:\mathrm{13}\:{y}/{o}\:``{confused}\:{face}''\: \\ $$$$\:{Sure}\:{Every}\:{friend}\:{can}\:{share}! \\ $$

Commented by mr W last updated on 12/Dec/22

2(√(14)) or 2(√(24)) ?

$$\mathrm{2}\sqrt{\mathrm{14}}\:{or}\:\mathrm{2}\sqrt{\mathrm{24}}\:? \\ $$

Commented by Acem last updated on 12/Dec/22

No, it′s about 1.383 8 Sir , am not ok right now   i will solve it again later though it′s so boring

$${No},\:{it}'{s}\:{about}\:\mathrm{1}.\mathrm{383}\:\mathrm{8}\:{Sir}\:,\:{am}\:{not}\:{ok}\:{right}\:{now} \\ $$$$\:{i}\:{will}\:{solve}\:{it}\:{again}\:{later}\:{though}\:{it}'{s}\:{so}\:{boring} \\ $$$$\: \\ $$

Commented by mr W last updated on 13/Dec/22

i didn′t mean the answer is 2(√(14)) or  2(√(24)). i asked if it is 2(√(14)) or 2(√(24)) in the   question.  i have a different solution than you  all, see below.

$${i}\:{didn}'{t}\:{mean}\:{the}\:{answer}\:{is}\:\mathrm{2}\sqrt{\mathrm{14}}\:{or} \\ $$$$\mathrm{2}\sqrt{\mathrm{24}}.\:{i}\:{asked}\:{if}\:{it}\:{is}\:\mathrm{2}\sqrt{\mathrm{14}}\:{or}\:\mathrm{2}\sqrt{\mathrm{24}}\:{in}\:{the}\: \\ $$$${question}. \\ $$$${i}\:{have}\:{a}\:{different}\:{solution}\:{than}\:{you} \\ $$$${all},\:{see}\:{below}. \\ $$

Commented by manxsol last updated on 13/Dec/22

  Sir W could share his solution.I   would appreciate it if you  critque my solution.

$$ \\ $$$$\mathrm{Sir}\:\mathrm{W}\:\mathrm{could}\:\mathrm{share}\:\mathrm{his}\:\mathrm{solution}.\mathrm{I} \\ $$$$\:\mathrm{would}\:\mathrm{appreciate}\:\mathrm{it}\:\mathrm{if}\:\mathrm{you} \\ $$$$\mathrm{critque}\:\mathrm{my}\:\mathrm{solution}. \\ $$

Commented by manxsol last updated on 14/Dec/22

combination   metod friz+metod rasheed  solution  (√x)+(√y)=(√u)       x(a),y(a), u=k  4ux=[u+(x−y)]^2      I  4uy=[u−(x−y)]^2      II  sea  x−y=qa+b    lineal  solve I   ⇒ma^2 +na+p  solve II⇒ ma^2 +na+p  solve ma^2 +na+p=0  a_1   a_2   DEVELOPING  (√x)+(√y)=(√u)  ((√x)−(√y))((√x)+(√y))=(√u)((√x)−(√y))  x−y=(√u) ((√x)−(√y))  ..................  (√x)−(√y)=(((x−y))/( (√u)))  (√x)+(√y)=(√u)  ..................  add  2(√x)=(((u+(x−y)))/( (√u)))  4xu=(u+(x−y)^2 )  4yu=(u−(x−y)^2 )  CONCLUSION  (√x)+(√y)=(√u)  is equivalent a solve  {4xu=(u+(x−y))^2   } ∪  {4yu=(u−(x−y))^(2  ) }

$${combination}\: \\ $$$${metod}\:{friz}+{metod}\:{rasheed} \\ $$$${solution} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\sqrt{{u}}\:\:\:\:\:\:\:{x}\left({a}\right),{y}\left({a}\right),\:{u}={k} \\ $$$$\mathrm{4}{ux}=\left[{u}+\left({x}−{y}\right)\right]^{\mathrm{2}} \:\:\:\:\:{I} \\ $$$$\mathrm{4}{uy}=\left[{u}−\left({x}−{y}\right)\right]^{\mathrm{2}} \:\:\:\:\:{II} \\ $$$${sea}\:\:{x}−{y}={qa}+{b}\:\:\:\:{lineal} \\ $$$${solve}\:{I}\:\:\:\Rightarrow{ma}^{\mathrm{2}} +{na}+{p} \\ $$$${solve}\:{II}\Rightarrow\:{ma}^{\mathrm{2}} +{na}+{p} \\ $$$${solve}\:{ma}^{\mathrm{2}} +{na}+{p}=\mathrm{0} \\ $$$${a}_{\mathrm{1}} \\ $$$${a}_{\mathrm{2}} \\ $$$${DEVELOPING} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\sqrt{{u}} \\ $$$$\left(\sqrt{{x}}−\sqrt{{y}}\right)\left(\sqrt{{x}}+\sqrt{{y}}\right)=\sqrt{{u}}\left(\sqrt{{x}}−\sqrt{{y}}\right) \\ $$$${x}−{y}=\sqrt{{u}}\:\left(\sqrt{{x}}−\sqrt{{y}}\right) \\ $$$$.................. \\ $$$$\sqrt{{x}}−\sqrt{{y}}=\frac{\left({x}−{y}\right)}{\:\sqrt{{u}}} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\sqrt{{u}} \\ $$$$.................. \\ $$$${add} \\ $$$$\mathrm{2}\sqrt{{x}}=\frac{\left({u}+\left({x}−{y}\right)\right)}{\:\sqrt{{u}}} \\ $$$$\mathrm{4}{xu}=\left({u}+\left({x}−{y}\right)^{\mathrm{2}} \right) \\ $$$$\mathrm{4}{yu}=\left({u}−\left({x}−{y}\right)^{\mathrm{2}} \right) \\ $$$${CONCLUSION} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\sqrt{{u}} \\ $$$${is}\:{equivalent}\:{a}\:{solve} \\ $$$$\left\{\mathrm{4}{xu}=\left({u}+\left({x}−{y}\right)\right)^{\mathrm{2}} \:\:\right\}\:\cup \\ $$$$\left\{\mathrm{4}{yu}=\left({u}−\left({x}−{y}\right)\right)^{\mathrm{2}\:\:} \right\} \\ $$$$ \\ $$

Commented by manxsol last updated on 14/Dec/22

aplication  (√(39−10a−a^2 ))+(√(9−a^2 ))=2(√(14))  x=39−10a−a^2   y=9−a^2   u=56  the magic  :  x−y=30−10a  solve with 4yu=(u−(x−y))^2   (it easy)  4(56)(9−a^2 )=[56−(30−10a)]^2   4(56)(9−a^2 )=[26+10a]^2   504−56a^2 =(13+5a)^2   504−56a^2 =169+25a^2 +130a  81a^2 +130a−335=0  a_1 = 1.3837  a_2 =−2.9887 root strange

$${aplication} \\ $$$$\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }+\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{14}} \\ $$$${x}=\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} \\ $$$${y}=\mathrm{9}−{a}^{\mathrm{2}} \\ $$$${u}=\mathrm{56} \\ $$$${the}\:{magic}\:\::\:\:{x}−{y}=\mathrm{30}−\mathrm{10}{a} \\ $$$${solve}\:{with}\:\mathrm{4}{yu}=\left({u}−\left({x}−{y}\right)\right)^{\mathrm{2}} \\ $$$$\left({it}\:{easy}\right) \\ $$$$\mathrm{4}\left(\mathrm{56}\right)\left(\mathrm{9}−{a}^{\mathrm{2}} \right)=\left[\mathrm{56}−\left(\mathrm{30}−\mathrm{10}{a}\right)\right]^{\mathrm{2}} \\ $$$$\mathrm{4}\left(\mathrm{56}\right)\left(\mathrm{9}−{a}^{\mathrm{2}} \right)=\left[\mathrm{26}+\mathrm{10}{a}\right]^{\mathrm{2}} \\ $$$$\mathrm{504}−\mathrm{56}{a}^{\mathrm{2}} =\left(\mathrm{13}+\mathrm{5}{a}\right)^{\mathrm{2}} \\ $$$$\mathrm{504}−\mathrm{56}{a}^{\mathrm{2}} =\mathrm{169}+\mathrm{25}{a}^{\mathrm{2}} +\mathrm{130}{a} \\ $$$$\mathrm{81}{a}^{\mathrm{2}} +\mathrm{130}{a}−\mathrm{335}=\mathrm{0} \\ $$$${a}_{\mathrm{1}} =\:\mathrm{1}.\mathrm{3837} \\ $$$${a}_{\mathrm{2}} =−\mathrm{2}.\mathrm{9887}\:{root}\:{strange} \\ $$$$ \\ $$$$ \\ $$

Answered by Frix last updated on 12/Dec/22

Generally: (√u)+(√v)=w  Squaring and transforming ⇒  2(√u)(√v)+v=w^2 −u−v  Squaring and transforming ⇒  −4uv+(w^2 −u−v)^2 =0  Inserting u=−a^2 −10a+39∧v=−a^2 +9∧w=2(√(14))  324a^2 +520a−1340=0  a^2 +((130a)/(81))−((335)/(81))=0  a>0 ⇒ a=((−65+56(√(10)))/(81))≈1.38379690  No “magic” possible

$$\mathrm{Generally}:\:\sqrt{{u}}+\sqrt{{v}}={w} \\ $$$$\mathrm{Squaring}\:\mathrm{and}\:\mathrm{transforming}\:\Rightarrow \\ $$$$\mathrm{2}\sqrt{{u}}\sqrt{{v}}+{v}={w}^{\mathrm{2}} −{u}−{v} \\ $$$$\mathrm{Squaring}\:\mathrm{and}\:\mathrm{transforming}\:\Rightarrow \\ $$$$−\mathrm{4}{uv}+\left({w}^{\mathrm{2}} −{u}−{v}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{Inserting}\:{u}=−{a}^{\mathrm{2}} −\mathrm{10}{a}+\mathrm{39}\wedge{v}=−{a}^{\mathrm{2}} +\mathrm{9}\wedge{w}=\mathrm{2}\sqrt{\mathrm{14}} \\ $$$$\mathrm{324}{a}^{\mathrm{2}} +\mathrm{520}{a}−\mathrm{1340}=\mathrm{0} \\ $$$${a}^{\mathrm{2}} +\frac{\mathrm{130}{a}}{\mathrm{81}}−\frac{\mathrm{335}}{\mathrm{81}}=\mathrm{0} \\ $$$${a}>\mathrm{0}\:\Rightarrow\:{a}=\frac{−\mathrm{65}+\mathrm{56}\sqrt{\mathrm{10}}}{\mathrm{81}}\approx\mathrm{1}.\mathrm{38379690} \\ $$$$\mathrm{No}\:``\mathrm{magic}''\:\mathrm{possible} \\ $$

Commented by Acem last updated on 12/Dec/22

 I thought in substituation the variable but   i figured out that there will be still problems   I ask for a magical way if is there?

$$\:{I}\:{thought}\:{in}\:{substituation}\:{the}\:{variable}\:{but} \\ $$$$\:{i}\:{figured}\:{out}\:{that}\:{there}\:{will}\:{be}\:{still}\:{problems} \\ $$$$\:{I}\:{ask}\:{for}\:{a}\:{magical}\:{way}\:{if}\:{is}\:{there}? \\ $$

Commented by Acem last updated on 12/Dec/22

Can you show all steps?

$${Can}\:{you}\:{show}\:{all}\:{steps}? \\ $$

Commented by Frix last updated on 12/Dec/22

I inserted a few lines more

$$\mathrm{I}\:\mathrm{inserted}\:\mathrm{a}\:\mathrm{few}\:\mathrm{lines}\:\mathrm{more} \\ $$

Commented by Acem last updated on 13/Dec/22

Commented by Acem last updated on 13/Dec/22

 How did you make the formula?

$$\:{How}\:{did}\:{you}\:{make}\:{the}\:{formula}? \\ $$

Answered by Acem last updated on 12/Dec/22

(√(39− 10 a −a^2 )) + (√(9−a^2 )) = 2 (√(14))   (√(10(3 −a) +(9−a^2 ))) + (√(9−a^2 )) = 2(√(14))   (√(9−a^2 )) ((√((10(3−a))/(9−a^2 ))) +1)= 2(√(14))  ((10(3−a))/(9−a^2 )) +1 + 2 (√((10(3−a))/(9−a^2 ))) = ((56)/(9−a^2 ))  (√((10(3−a))/(9−a^2 ))) = (1/2)[ ((56)/(9−a^2 )) − ((10(3−a))/(9−a^2 ))  −1]_(making it as one term) ^(No usefull with (3−a)(3+a))    10 = (3+a)^  × S_2 ^( 2) ^↗    etc... etc until we get rid of the root   To face another complicated problems   40= (((a^2 + 10a +17)^2 )/((3−a)^2  (3+a)))        ∼ Boriiiing   40= (([(a+5)^2  −8]^2 )/((3−a)^2  (3+a)))     Hfff

$$\sqrt{\mathrm{39}−\:\mathrm{10}\:{a}\:−{a}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\:\mathrm{2}\:\sqrt{\mathrm{14}} \\ $$$$\:\sqrt{\mathrm{10}\left(\mathrm{3}\:−{a}\right)\:+\left(\mathrm{9}−{a}^{\mathrm{2}} \right)}\:+\:\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\:\mathrm{2}\sqrt{\mathrm{14}} \\ $$$$\:\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:\left(\sqrt{\frac{\mathrm{10}\left(\mathrm{3}−{a}\right)}{\mathrm{9}−{a}^{\mathrm{2}} }}\:+\mathrm{1}\right)=\:\mathrm{2}\sqrt{\mathrm{14}} \\ $$$$\frac{\mathrm{10}\left(\mathrm{3}−{a}\right)}{\mathrm{9}−{a}^{\mathrm{2}} }\:+\mathrm{1}\:+\:\mathrm{2}\:\sqrt{\frac{\mathrm{10}\left(\mathrm{3}−{a}\right)}{\mathrm{9}−{a}^{\mathrm{2}} }}\:=\:\frac{\mathrm{56}}{\mathrm{9}−{a}^{\mathrm{2}} } \\ $$$$\sqrt{\frac{\mathrm{10}\left(\mathrm{3}−{a}\right)}{\mathrm{9}−{a}^{\mathrm{2}} }}\:=\:\underset{{making}\:{it}\:{as}\:{one}\:{term}} {\underbrace{\frac{\mathrm{1}}{\mathrm{2}}\left[\:\frac{\mathrm{56}}{\mathrm{9}−{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{10}\left(\mathrm{3}−{a}\right)}{\mathrm{9}−{a}^{\mathrm{2}} }\:\:−\mathrm{1}\right]}}\:^{{No}\:{usefull}\:{with}\:\left(\mathrm{3}−{a}\right)\left(\mathrm{3}+{a}\right)} \\ $$$$\:\mathrm{10}\:=\:\left(\mathrm{3}+{a}\right)^{\:} ×\:{S}_{\mathrm{2}} ^{\:\mathrm{2}} \:^{\nearrow} \\ $$$$\:{etc}...\:{etc}\:{until}\:{we}\:{get}\:{rid}\:{of}\:{the}\:{root} \\ $$$$\:{To}\:{face}\:{another}\:{complicated}\:{problems} \\ $$$$\:\mathrm{40}=\:\frac{\left({a}^{\mathrm{2}} +\:\mathrm{10}{a}\:+\mathrm{17}\right)^{\mathrm{2}} }{\left(\mathrm{3}−{a}\right)^{\mathrm{2}} \:\left(\mathrm{3}+{a}\right)}\:\:\:\:\:\:\:\:\sim\:{Boriiiing} \\ $$$$\:\mathrm{40}=\:\frac{\left[\left({a}+\mathrm{5}\right)^{\mathrm{2}} \:−\mathrm{8}\right]^{\mathrm{2}} }{\left(\mathrm{3}−{a}\right)^{\mathrm{2}} \:\left(\mathrm{3}+{a}\right)}\:\:\:\:\:{Hfff} \\ $$$$ \\ $$

Answered by Rasheed.Sindhi last updated on 13/Dec/22

(√(39−10a−a^2 ))  +(√(9−a^2 ))  =2(√(14))  _(−)    ⇒∣a∣<3   ((√(39−10a−a^2 ))  +(√(9−a^2 )) )((√(39−10a−a^2 ))  −(√(9−a^2 )) ) =2(√(14)) ((√(39−10a−a^2 ))  −(√(9−a^2 )) )  39−10a−a^2 −9+a^2 =2(√(14)) ((√(39−10a−a^2 ))  −(√(9−a^2 )) )  (√(39−10a−a^2 ))  −(√(9−a^2 )) =((30−10a)/(2(√(14))))  (√(39−10a−a^2 ))  −(√(9−a^2 )) =((15−5a)/( (√(14))))   determinant ((((√(39−10a−a^2 ))  −(√(9−a^2 )) =((15−5a)/( (√(14))))_((√(39−10a−a^2 ))  +(√(9−a^2 )) = ^( ) 2(√(14 )) ...(ii)           ) ...(i))))  (ii)−(i) : 2(√(9−a^2 )) =2(√(14)) −((15−5a)/( (√(14))))                    =((28−15+5a)/( (√(14))))=((13+5a)/( (√(14))))  {2((√(9−a^2 )))}^2 =(((13+5a)/( (√(14)))))^2   4(9−a^2 )=((169+130a+25a^2 )/(14))  504−56a^2 =169+130a+25a^2   81a^2 +130a−335=0  a=((−130±(√(130^2 −4(81)(−335))))/(162))  a=((−65±56(√(10)))/(81))  a=1.3838^✓ ,−2.9888(Extraneous)

$$\underset{−} {\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:+\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:\:=\mathrm{2}\sqrt{\mathrm{14}}\:\:}\: \\ $$$$\Rightarrow\mid{a}\mid<\mathrm{3}\: \\ $$$$\left(\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:+\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:\right)\left(\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:−\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:\right)\:=\mathrm{2}\sqrt{\mathrm{14}}\:\left(\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:−\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:\right) \\ $$$$\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} −\mathrm{9}+{a}^{\mathrm{2}} =\mathrm{2}\sqrt{\mathrm{14}}\:\left(\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:−\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:\right) \\ $$$$\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:−\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\frac{\mathrm{30}−\mathrm{10}{a}}{\mathrm{2}\sqrt{\mathrm{14}}} \\ $$$$\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:−\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\frac{\mathrm{15}−\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}} \\ $$$$\begin{array}{|c|}{\underset{\overset{\:} {\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:+\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\:}\mathrm{2}\sqrt{\mathrm{14}\:}\:...\left({ii}\right)\:\:\:\:\:\:\:\:\:\:\:} {\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:\:−\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\frac{\mathrm{15}−\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}}}...\left({i}\right)}\\\hline\end{array} \\ $$$$\left({ii}\right)−\left({i}\right)\::\:\mathrm{2}\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\mathrm{2}\sqrt{\mathrm{14}}\:−\frac{\mathrm{15}−\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{28}−\mathrm{15}+\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}}=\frac{\mathrm{13}+\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}} \\ $$$$\left\{\mathrm{2}\left(\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\right)\right\}^{\mathrm{2}} =\left(\frac{\mathrm{13}+\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}\left(\mathrm{9}−{a}^{\mathrm{2}} \right)=\frac{\mathrm{169}+\mathrm{130}{a}+\mathrm{25}{a}^{\mathrm{2}} }{\mathrm{14}} \\ $$$$\mathrm{504}−\mathrm{56}{a}^{\mathrm{2}} =\mathrm{169}+\mathrm{130}{a}+\mathrm{25}{a}^{\mathrm{2}} \\ $$$$\mathrm{81}{a}^{\mathrm{2}} +\mathrm{130}{a}−\mathrm{335}=\mathrm{0} \\ $$$${a}=\frac{−\mathrm{130}\pm\sqrt{\mathrm{130}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{81}\right)\left(−\mathrm{335}\right)}}{\mathrm{162}} \\ $$$${a}=\frac{−\mathrm{65}\pm\mathrm{56}\sqrt{\mathrm{10}}}{\mathrm{81}} \\ $$$${a}=\mathrm{1}.\mathrm{3838}^{\checkmark} ,−\mathrm{2}.\mathrm{9888}\left({Extraneous}\right) \\ $$

Commented by Acem last updated on 13/Dec/22

Weeeeee! Shokrannnn  I will see the 2 your methods when finish work  Thank you with all my heart!

$${Weeeeee}!\:{Shokrannnn} \\ $$$${I}\:{will}\:{see}\:{the}\:\mathrm{2}\:{your}\:{methods}\:{when}\:{finish}\:{work} \\ $$$${Thank}\:{you}\:{with}\:{all}\:{my}\:{heart}! \\ $$

Commented by Rasheed.Sindhi last updated on 13/Dec/22

You′re welcome sir!

$$\boldsymbol{\mathrm{Y}}\mathrm{ou}'\mathrm{re}\:\boldsymbol{\mathrm{w}}\mathrm{elcome}\:\boldsymbol{\mathrm{s}}\mathrm{ir}!\: \\ $$

Answered by Rasheed.Sindhi last updated on 13/Dec/22

(√(39−10a−a^2 )) _(x) +(√(9−a^2 )) _(y) =2(√(14))  x+y=2(√(14)) ......(i)  x^2 −y^2 =(39−10a−a^2 )−(9−a^2 )=30−10a  x−y=((x^2 −y^2 )/(x+y))=((30−10a)/(2(√(14))))=((15−5a)/( (√(14))))...(ii)  (i)−(ii):   2y=2(√(14)) −((15−5a)/( (√(14))))=((28−15+5a)/( (√(14))))  y=((13+5a)/(2(√(14))))  (√(9−a^2 )) =((13+5a)/(2(√(14))))  9−a^2 =(((13+5a)/(2(√(14)))))^2 =((169+130a+25a^2 )/(56))  504−56a^2 =169+130a+25a^2   81a^2 +130a−335=0       a=((−130±(√(130^2 −4(81)(−335))))/(162))         =((−130±112(√(10)) )/(162))         =((−65±56(√(10)) )/(81))        =1.3838^✓  , −2.9888(Not required)

$$\underset{{x}} {\underbrace{\sqrt{\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} }\:}}+\underset{{y}} {\underbrace{\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:}}=\mathrm{2}\sqrt{\mathrm{14}} \\ $$$${x}+{y}=\mathrm{2}\sqrt{\mathrm{14}}\:......\left({i}\right) \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\left(\mathrm{39}−\mathrm{10}{a}−{a}^{\mathrm{2}} \right)−\left(\mathrm{9}−{a}^{\mathrm{2}} \right)=\mathrm{30}−\mathrm{10}{a} \\ $$$${x}−{y}=\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}+{y}}=\frac{\mathrm{30}−\mathrm{10}{a}}{\mathrm{2}\sqrt{\mathrm{14}}}=\frac{\mathrm{15}−\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}}...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right):\: \\ $$$$\mathrm{2}{y}=\mathrm{2}\sqrt{\mathrm{14}}\:−\frac{\mathrm{15}−\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}}=\frac{\mathrm{28}−\mathrm{15}+\mathrm{5}{a}}{\:\sqrt{\mathrm{14}}} \\ $$$${y}=\frac{\mathrm{13}+\mathrm{5}{a}}{\mathrm{2}\sqrt{\mathrm{14}}} \\ $$$$\sqrt{\mathrm{9}−{a}^{\mathrm{2}} }\:=\frac{\mathrm{13}+\mathrm{5}{a}}{\mathrm{2}\sqrt{\mathrm{14}}} \\ $$$$\mathrm{9}−{a}^{\mathrm{2}} =\left(\frac{\mathrm{13}+\mathrm{5}{a}}{\mathrm{2}\sqrt{\mathrm{14}}}\right)^{\mathrm{2}} =\frac{\mathrm{169}+\mathrm{130}{a}+\mathrm{25}{a}^{\mathrm{2}} }{\mathrm{56}} \\ $$$$\mathrm{504}−\mathrm{56}{a}^{\mathrm{2}} =\mathrm{169}+\mathrm{130}{a}+\mathrm{25}{a}^{\mathrm{2}} \\ $$$$\mathrm{81}{a}^{\mathrm{2}} +\mathrm{130}{a}−\mathrm{335}=\mathrm{0} \\ $$$$\:\:\:\:\:{a}=\frac{−\mathrm{130}\pm\sqrt{\mathrm{130}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{81}\right)\left(−\mathrm{335}\right)}}{\mathrm{162}} \\ $$$$\:\:\:\:\:\:\:=\frac{−\mathrm{130}\pm\mathrm{112}\sqrt{\mathrm{10}}\:}{\mathrm{162}} \\ $$$$\:\:\:\:\:\:\:=\frac{−\mathrm{65}\pm\mathrm{56}\sqrt{\mathrm{10}}\:}{\mathrm{81}} \\ $$$$\:\:\:\:\:\:=\mathrm{1}.\mathrm{3838}^{\checkmark} \:,\:−\mathrm{2}.\mathrm{9888}\left({Not}\:{required}\right) \\ $$$$ \\ $$

Commented by Acem last updated on 13/Dec/22

Thank you! dear friend

$${Thank}\:{you}!\:{dear}\:{friend} \\ $$

Commented by manxsol last updated on 13/Dec/22

wait,Sir Acem other method

$${wait},{Sir}\:{Acem}\:{other}\:{method} \\ $$

Commented by manxsol last updated on 13/Dec/22

solution not is completed

$${solution}\:{not}\:{is}\:{completed} \\ $$

Commented by manxsol last updated on 13/Dec/22

I found the magic against boredom

$${I}\:{found}\:{the}\:{magic}\:{against}\:{boredom} \\ $$

Answered by mr W last updated on 14/Dec/22

Commented by mr W last updated on 13/Dec/22

geometric method    (√(39−10x−x^2 ))+(√(9−x^2 ))=2(√(14))  ⇒(√(8^2 −(5+x)^2 ))+(√(3^2 −x^2 ))=2(√(14))  the geometric meaning of this  equation see diagram above.  (√(5^2 +(2(√(14)))^2 ))=9  sin α=(5/9) ⇒cos α=((2(√(14)))/9)  cos β=((8^2 +9^2 −3^2 )/(2×8×9))=((17)/(18)) ⇒sin β=((√(35))/(18))  5+x=8 sin (α+β)           =8 ((5/9)×((17)/(18))+((2(√(14)))/9)×((√(35))/(18)))           =((4(85+14(√(10))))/(81))   ⇒x=((4(85+14(√(10))))/(81))−5=((56(√(10))−65)/(81)) ✓

$$\underline{\boldsymbol{{geometric}}\:\boldsymbol{{method}}} \\ $$$$ \\ $$$$\sqrt{\mathrm{39}−\mathrm{10}{x}−{x}^{\mathrm{2}} }+\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{14}} \\ $$$$\Rightarrow\sqrt{\mathrm{8}^{\mathrm{2}} −\left(\mathrm{5}+{x}\right)^{\mathrm{2}} }+\sqrt{\mathrm{3}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{14}} \\ $$$${the}\:{geometric}\:{meaning}\:{of}\:{this} \\ $$$${equation}\:{see}\:{diagram}\:{above}. \\ $$$$\sqrt{\mathrm{5}^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{14}}\right)^{\mathrm{2}} }=\mathrm{9} \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{5}}{\mathrm{9}}\:\Rightarrow\mathrm{cos}\:\alpha=\frac{\mathrm{2}\sqrt{\mathrm{14}}}{\mathrm{9}} \\ $$$$\mathrm{cos}\:\beta=\frac{\mathrm{8}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }{\mathrm{2}×\mathrm{8}×\mathrm{9}}=\frac{\mathrm{17}}{\mathrm{18}}\:\Rightarrow\mathrm{sin}\:\beta=\frac{\sqrt{\mathrm{35}}}{\mathrm{18}} \\ $$$$\mathrm{5}+{x}=\mathrm{8}\:\mathrm{sin}\:\left(\alpha+\beta\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{8}\:\left(\frac{\mathrm{5}}{\mathrm{9}}×\frac{\mathrm{17}}{\mathrm{18}}+\frac{\mathrm{2}\sqrt{\mathrm{14}}}{\mathrm{9}}×\frac{\sqrt{\mathrm{35}}}{\mathrm{18}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{4}\left(\mathrm{85}+\mathrm{14}\sqrt{\mathrm{10}}\right)}{\mathrm{81}} \\ $$$$\:\Rightarrow{x}=\frac{\mathrm{4}\left(\mathrm{85}+\mathrm{14}\sqrt{\mathrm{10}}\right)}{\mathrm{81}}−\mathrm{5}=\frac{\mathrm{56}\sqrt{\mathrm{10}}−\mathrm{65}}{\mathrm{81}}\:\checkmark \\ $$

Commented by manxsol last updated on 14/Dec/22

you are great!

$${you}\:{are}\:{great}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com