All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 182791 by Matica last updated on 14/Dec/22
Wehave0<x<aandm,n∈N. Provexm(a−x)n⩽mmnn(m+n)m+n⋅am+n
Answered by mahdipoor last updated on 14/Dec/22
getf(x)=xm(a−x)n0<x<a dfdx=mxm−1(a−x)n−n(a−x)n−1xm=0 =(a−x)n−1xm−1(m(a−x)−nx)⇒x=mam+n maxf=f(mam+n)=mmnnam+n(m+n)m+n f⩽maxf⇒xm(a−x)n⩽mmnnam+n(m+n)m+n
Commented byMatica last updated on 15/Dec/22
thankyoualot
Answered by dre23 last updated on 15/Dec/22
xm(1−x)n⩽mmnn(m+n)m+n,....S byx→ax⇔∀0<x<1.....S ⇔(xm)m(1−xn)n⩽1(n+m)n+m⇔S mln(xm)+nln(1−xn)....S x→fln(x)isconcave,f″=−1x2<0,∀x∈]0,1] mn+mln(xm)+nn+mln(1−xn)⩽ln(1n+m) (n+m){mm+nln(xm)+nn+mln(1−xn)}⩽ (n+m)ln(xn+m+1−xn+m)⩽(n+m)ln(1n+m)=ln(1(n+m)n+m) ⇔s⩽ln(1(n+m)n+m)tacke ⇔(xm)m(1−xn)n⩽(1n+m)n+m..True
Terms of Service
Privacy Policy
Contact: info@tinkutara.com