Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182791 by Matica last updated on 14/Dec/22

 We have 0<x<a and m,n ∈N.   Prove x^m (a−x)^n ≤ ((m^m n^n )/((m+n)^(m+n) ))∙a^(m+n)

$$\:{We}\:{have}\:\mathrm{0}<{x}<{a}\:{and}\:{m},{n}\:\in\mathbb{N}. \\ $$ $$\:{Prove}\:{x}^{{m}} \left({a}−{x}\right)^{{n}} \leqslant\:\frac{{m}^{{m}} {n}^{{n}} }{\left({m}+{n}\right)^{{m}+{n}} }\centerdot{a}^{{m}+{n}} \\ $$

Answered by mahdipoor last updated on 14/Dec/22

get f(x)=x^m (a−x)^n       0<x<a  (df/dx)=mx^(m−1) (a−x)^n −n(a−x)^(n−1) x^m =0  =(a−x)^(n−1) x^(m−1) (m(a−x)−nx)⇒x=((ma)/(m+n))  max f=f(((ma)/(m+n)))=((m^m n^n a^(m+n) )/((m+n)^(m+n) ))  f≤max f⇒  x^m (a−x)^n ≤((m^m n^n a^(m+n) )/((m+n)^(m+n) ))

$${get}\:{f}\left({x}\right)={x}^{{m}} \left({a}−{x}\right)^{{n}} \:\:\:\:\:\:\mathrm{0}<{x}<{a} \\ $$ $$\frac{{df}}{{dx}}={mx}^{{m}−\mathrm{1}} \left({a}−{x}\right)^{{n}} −{n}\left({a}−{x}\right)^{{n}−\mathrm{1}} {x}^{{m}} =\mathrm{0} \\ $$ $$=\left({a}−{x}\right)^{{n}−\mathrm{1}} {x}^{{m}−\mathrm{1}} \left({m}\left({a}−{x}\right)−{nx}\right)\Rightarrow{x}=\frac{{ma}}{{m}+{n}} \\ $$ $${max}\:{f}={f}\left(\frac{{ma}}{{m}+{n}}\right)=\frac{{m}^{{m}} {n}^{{n}} {a}^{{m}+{n}} }{\left({m}+{n}\right)^{{m}+{n}} } \\ $$ $${f}\leqslant{max}\:{f}\Rightarrow\:\:{x}^{{m}} \left({a}−{x}\right)^{{n}} \leqslant\frac{{m}^{{m}} {n}^{{n}} {a}^{{m}+{n}} }{\left({m}+{n}\right)^{{m}+{n}} } \\ $$ $$ \\ $$

Commented byMatica last updated on 15/Dec/22

thank you  a lot

$${thank}\:{you}\:\:{a}\:{lot} \\ $$

Answered by dre23 last updated on 15/Dec/22

x^m (1−x)^n ≤((m^m n^n )/((m+n)^(m+n) )),....S  by x→ax⇔∀ 0<x<1 .....S  ⇔((x/m))^m (((1−x)/n))^n ≤(1/((n+m)^(n+m) ))⇔S  mln((x/m))+nln(((1−x)/n))....S  x→^f ln(x) is concave,f′′=−(1/x^2 )<0,∀x∈]0,1]  (m/(n+m))ln((x/m))+(n/(n+m))ln(((1−x)/n))≤ln((1/(n+m)))  (n+m){(m/(m+n))ln((x/m))+(n/(n+m))ln(((1−x)/n))}≤  (n+m)ln((x/(n+m))+((1−x)/(n+m)))≤(n+m)ln((1/(n+m)))=ln((1/((n+m)^(n+m) )))  ⇔s≤ln((1/((n+m)^(n+m) ))) tack e  ⇔((x/m))^m (((1−x)/n))^n ≤((1/(n+m)))^(n+m) ..True

$${x}^{{m}} \left(\mathrm{1}−{x}\right)^{{n}} \leqslant\frac{{m}^{{m}} {n}^{{n}} }{\left({m}+{n}\right)^{{m}+{n}} },....{S} \\ $$ $${by}\:{x}\rightarrow{ax}\Leftrightarrow\forall\:\mathrm{0}<{x}<\mathrm{1}\:.....{S} \\ $$ $$\Leftrightarrow\left(\frac{{x}}{{m}}\right)^{{m}} \left(\frac{\mathrm{1}−{x}}{{n}}\right)^{{n}} \leqslant\frac{\mathrm{1}}{\left({n}+{m}\right)^{{n}+{m}} }\Leftrightarrow{S} \\ $$ $${mln}\left(\frac{{x}}{{m}}\right)+{nln}\left(\frac{\mathrm{1}−{x}}{{n}}\right)....{S} \\ $$ $$\left.{x}\left.\overset{{f}} {\rightarrow}{ln}\left({x}\right)\:{is}\:{concave},{f}''=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }<\mathrm{0},\forall{x}\in\right]\mathrm{0},\mathrm{1}\right] \\ $$ $$\frac{{m}}{{n}+{m}}{ln}\left(\frac{{x}}{{m}}\right)+\frac{{n}}{{n}+{m}}{ln}\left(\frac{\mathrm{1}−{x}}{{n}}\right)\leqslant{ln}\left(\frac{\mathrm{1}}{{n}+{m}}\right) \\ $$ $$\left({n}+{m}\right)\left\{\frac{{m}}{{m}+{n}}{ln}\left(\frac{{x}}{{m}}\right)+\frac{{n}}{{n}+{m}}{ln}\left(\frac{\mathrm{1}−{x}}{{n}}\right)\right\}\leqslant \\ $$ $$\left({n}+{m}\right){ln}\left(\frac{{x}}{{n}+{m}}+\frac{\mathrm{1}−{x}}{{n}+{m}}\right)\leqslant\left({n}+{m}\right){ln}\left(\frac{\mathrm{1}}{{n}+{m}}\right)={ln}\left(\frac{\mathrm{1}}{\left({n}+{m}\right)^{{n}+{m}} }\right) \\ $$ $$\Leftrightarrow{s}\leqslant{ln}\left(\frac{\mathrm{1}}{\left({n}+{m}\right)^{{n}+{m}} }\right)\:{tack}\:{e} \\ $$ $$\Leftrightarrow\left(\frac{{x}}{{m}}\right)^{{m}} \left(\frac{\mathrm{1}−{x}}{{n}}\right)^{{n}} \leqslant\left(\frac{\mathrm{1}}{{n}+{m}}\right)^{{n}+{m}} ..{True} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com