All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 182794 by mnjuly1970 last updated on 14/Dec/22
Ω=∑∞n=1(−1)n2n.n(n+1)(n+2)=?
Answered by ARUNG_Brandon_MBU last updated on 14/Dec/22
S(x)=∑∞n=1xn+2n(n+1)(n+2)⇒S′(x)=∑∞n=1xn+1n(n+1)⇒S″(x)=∑∞n=1xnn⇒S‴(x)=∑∞n=1xn−1=11−x⇒S″(x)=∑∞n=1xnn=−ln(1−x)+C1,C1=0⇒S′(x)=∑∞n=1xn+1n(n+1)=(1−x)ln(1−x)+x−1+C2,C2=1⇒S′(x)=ln(1−x)−xln(1−x)+x⇒S(x)=∫[−xln(1−x)+ln(1−x)+x]dx⇒S(x)=−x22ln(1−x)+12(x22+x+ln∣x−1∣)+(1−x)−(1−x)ln(1−x)+x22+C3,C3=−1⇒∑∞n=1(−1)n2nn(n+1)(n+2)=22S(−12)=−12ln(32)+2(18−12+ln(32))+6−6ln(32)+12−4⇒Ω=74−92ln(32)
Commented by mnjuly1970 last updated on 14/Dec/22
grateful.thankyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com