Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182794 by mnjuly1970 last updated on 14/Dec/22

         Ω = Σ_(n=1) ^∞  (( (−1_ ^  )^( n) )/(2^( n) .n(n+_ ^ 1)(n+_ ^ 2))) = ?

Ω=n=1(1)n2n.n(n+1)(n+2)=?

Answered by ARUNG_Brandon_MBU last updated on 14/Dec/22

S(x)=Σ_(n=1) ^∞ (x^(n+2) /(n(n+1)(n+2))) ⇒S ′(x)=Σ_(n=1) ^∞ (x^(n+1) /(n(n+1)))  ⇒S ′′(x)=Σ_(n=1) ^∞ (x^n /n) ⇒S ′′′(x)=Σ_(n=1) ^∞ x^(n−1) =(1/(1−x))  ⇒S ′′(x)=Σ_(n=1) ^∞ (x^n /n)=−ln(1−x)+C_1 , C_1 =0  ⇒S ′(x)=Σ_(n=1) ^∞ (x^(n+1) /(n(n+1)))=(1−x)ln(1−x)+x−1+C_2 , C_2 =1  ⇒S ′(x)=ln(1−x)−xln(1−x)+x  ⇒S(x)=∫[−xln(1−x)+ln(1−x)+x]dx  ⇒S(x)=−(x^2 /2)ln(1−x)+(1/2)((x^2 /2)+x+ln∣x−1∣)                   +(1−x)−(1−x)ln(1−x)+(x^2 /2)+C_3 , C_3 =−1  ⇒Σ_(n=1) ^∞ (((−1)^n )/(2^n n(n+1)(n+2)))=2^2 S(−(1/2))  =−(1/2)ln((3/2))+2((1/8)−(1/2)+ln((3/2)))+6−6ln((3/2))+(1/2)−4  ⇒Ω=(7/4)−(9/2)ln((3/2))

S(x)=n=1xn+2n(n+1)(n+2)S(x)=n=1xn+1n(n+1)S(x)=n=1xnnS(x)=n=1xn1=11xS(x)=n=1xnn=ln(1x)+C1,C1=0S(x)=n=1xn+1n(n+1)=(1x)ln(1x)+x1+C2,C2=1S(x)=ln(1x)xln(1x)+xS(x)=[xln(1x)+ln(1x)+x]dxS(x)=x22ln(1x)+12(x22+x+lnx1)+(1x)(1x)ln(1x)+x22+C3,C3=1n=1(1)n2nn(n+1)(n+2)=22S(12)=12ln(32)+2(1812+ln(32))+66ln(32)+124Ω=7492ln(32)

Commented by mnjuly1970 last updated on 14/Dec/22

grateful.thank you sir

grateful.thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com