Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182852 by mnjuly1970 last updated on 16/Dec/22

   challanging question..    if   , (1/( 1+(√(1−x+x^( 2) )))) −(x/(1+(√(1+x+x^( 2) ))))=1     find  the  value of :   (x/(x^( 2) +1))

challangingquestion..if,11+1x+x2x1+1+x+x2=1findthevalueof:xx2+1

Commented by Frix last updated on 15/Dec/22

The solutions of the equation are  x=((6+(√(−34+10(√(13)))))/(10))±((2+(√(34+10(√(13)))))/(10))i  ⇒ (x/(x^2 +1))=((3±i)/4)

Thesolutionsoftheequationarex=6+34+101310±2+34+101310ixx2+1=3±i4

Commented by Frix last updated on 16/Dec/22

Now you changed it.  Now x=−((1+(√7)+(√(−1+2(√7))))/3) ⇒  (x/(x^2 +1))=((1−(√7))/4)

Nowyouchangedit.Nowx=1+7+1+273xx2+1=174

Answered by Rasheed.Sindhi last updated on 16/Dec/22

  (1/( 1+(√(1−x+x^( 2) )))) +(x/(1+(√(1+x+x^( 2) ))))=1  (x/(x^( 2) +1))=?    (1/( 1+(√(x(x+(1/x)−1))))) +(x/(1+(√(x(x+(1/x)+1)))))=1  (1/( 1+(√x) (√(x+(1/x)−1))))+(x/( 1+(√x) (√(x+(1/x)+1)) ))=1  Let x+(1/x)+1=y^2           x+(1/x)−1=y^2 −2  (1/( 1+(√x) (√(y^2 −2))))+(x/( 1+y(√x)  ))=1  1−(1/( 1+(√x) (√(y^2 −2))))=(x/( 1+y(√x)  ))  ((1+(√x) (√(y^2 −2)) −1)/(1+(√x) (√(y^2 −2))))=(x/( 1+y(√x)  ))  (((√x) (√(y^2 −2)) )/(1+(√x) (√(y^2 −2))))=(x/( 1+y(√x)  ))  ((1+(√x) (√(y^2 −2)))/( (√x) (√(y^2 −2)) ))=((1+y(√x) )/x)  (1/( (√x) (√(y^2 −2)) ))+1=(1/x)+(y/( (√x)))  (1/( (√x) (√(y^2 −2)) ))−(y/( (√x)))=(1/x)−1=((1−x)/x)  (1/( (√(y^2 −2))))−y=((1−x)/( (√x)))  ((1−y(√(y^2 −2)) )/( (√(y^2 −2))))=((1−x)/( (√x)))  (((1−y(√(y^2 −2)) )/( (√(y^2 −2)))))^2 =(((1−x)/( (√x))))^2   ((1+y^2 (y^2 −2)−2y(√(y^2 −2)))/(y^2 −2))=((1+x^2 −2x)/x)  ((1+y^2 (y^2 −2)−2y(√(y^2 −2)))/(y^2 −2))=x+(1/x)−2  ((1+y^2 (y^2 −2)−2y(√(y^2 −2)))/(y^2 −2))=x+(1/x)+1−3  ((1+y^2 (y^2 −2)−2y(√(y^2 −2)))/(y^2 −2))=y^2 −3  1+y^4 −2y^2 −2y(√(y^2 −2)) =(y^2 −3)(y^2 −2)  1+y^4 −2y^2 −2y(√(y^2 −2)) =y^4 −5y^2 +6  2y(√(y^2 −2)) =3y^2 −5  4y^2 (y^2 −2)=9y^4 −30y^2 +25  5y^4 −22y^2 +25=0  y^2 =((22±(√(484−500)))/(10))=((22±4i)/(10))=((11±2i)/5)      ▶(x/(x^( 2) +1))=(1/(x+(1/x)))=(1/(x+(1/x)+1−1))=(1/(y^2 −1))    =(1/(((11±2i)/5)−1))=(1/((6±2i)/5))=(5/(6±2i))∙((6∓2i)/(6∓2i))  =((5(6∓2i))/(36+4))=((6∓2i)/8)=((3±i)/4)

11+1x+x2+x1+1+x+x2=1xx2+1=?11+x(x+1x1)+x1+x(x+1x+1)=111+xx+1x1+x1+xx+1x+1=1Letx+1x+1=y2x+1x1=y2211+xy22+x1+yx=1111+xy22=x1+yx1+xy2211+xy22=x1+yxxy221+xy22=x1+yx1+xy22xy22=1+yxx1xy22+1=1x+yx1xy22yx=1x1=1xx1y22y=1xx1yy22y22=1xx(1yy22y22)2=(1xx)21+y2(y22)2yy22y22=1+x22xx1+y2(y22)2yy22y22=x+1x21+y2(y22)2yy22y22=x+1x+131+y2(y22)2yy22y22=y231+y42y22yy22=(y23)(y22)1+y42y22yy22=y45y2+62yy22=3y254y2(y22)=9y430y2+255y422y2+25=0y2=22±48450010=22±4i10=11±2i5xx2+1=1x+1x=1x+1x+11=1y21=111±2i51=16±2i5=56±2i62i62i=5(62i)36+4=62i8=3±i4

Commented by manxsol last updated on 16/Dec/22

I am looking for a   simpler   development(desarrollo)  .Greetings

Iamlookingforasimplerdevelopment(desarrollo).Greetings

Commented by manxsol last updated on 16/Dec/22

error in line  2y(√(y^2 −2))=3y^2 −5  4y^2 (y^2 −2)=3y^2 −5  4y^2 (y^2 −2)=9y^4 −30y^2 +25  5y^4 −22y^2 +25=0  y^2 = ((22±(√(22^2 −500)))/(10))  y^2 =((22±4i)/(10))  y^2 =((11±2i)/5)  (x/(x^2 +1))=?⇒(1/(x+(1/x)))=(1/(y^2 −1))  (1/(((11±2i)/5)−1))=(1/((6±2i)/5))=(5/(6±2i))=((5(6−2i))/(40))  (x/(x^2 +1))=((3±i)/4)

errorinline2yy22=3y254y2(y22)=3y254y2(y22)=9y430y2+255y422y2+25=0y2=22±22250010y2=22±4i10y2=11±2i5xx2+1=?1x+1x=1y21111±2i51=16±2i5=56±2i=5(62i)40xx2+1=3±i4

Commented by Rasheed.Sindhi last updated on 15/Dec/22

Please  check  my  answer for errors.

Pleasecheckmyanswerforerrors.

Commented by mnjuly1970 last updated on 15/Dec/22

  x∈R ⇒ put    x =tan(α) and solve      answer  is  ((1−(√7) )/4)

xRputx=tan(α)andsolveansweris174

Commented by mr W last updated on 15/Dec/22

then something is wrong in question.  for x∈R, i think  (1/(1+(√(1−x+x^2 ))))+(x/(1+(√(1+x+x^2 ))))=1 has  no solution.

thensomethingiswronginquestion.forxR,ithink11+1x+x2+x1+1+x+x2=1hasnosolution.

Commented by ellenpaulisrae last updated on 15/Dec/22

hello

hello

Commented by Frix last updated on 15/Dec/22

Yes, there′s no real solution for the given  equation.

Yes,theresnorealsolutionforthegivenequation.

Commented by Rasheed.Sindhi last updated on 16/Dec/22

ThanX manxsol sir!   I′m going to correct my answer.  The approach is correct although  lengthy! I′ll wait for your simpler  approach.But mean while mnjuly sir   has changed his question and very   sorry to say that he did this without   any intimation! Anyway thanks   again!

ThanXmanxsolsir!Imgoingtocorrectmyanswer.Theapproachiscorrectalthoughlengthy!Illwaitforyoursimplerapproach.Butmeanwhilemnjulysirhaschangedhisquestionandverysorrytosaythathedidthiswithoutanyintimation!Anywaythanksagain!

Commented by mnjuly1970 last updated on 16/Dec/22

 you are right sir W  i modifid the question..

youarerightsirWimodifidthequestion..

Answered by Rasheed.Sindhi last updated on 16/Dec/22

Changed version of the question:   (1/( 1+(√(1−x+x^( 2) )))) −(x/(1+(√(1+x+x^( 2) ))))=1  (1/(1+(√x) ((√(x+(1/x)−1)) )))−1=(x/(1+(√x) ((√(x+(1/x)+1)) )))        Let x+(1/x)+1=y^2 ⇒x+(1/x)−1=y^2 −2  ((1−1−(√x) ((√(y^2 −2)) ))/(1+(√x) ((√(y^2 −2)) )))=(x/(1+y(√x) ))  ((−(√x) ((√(y^2 −2)) ))/(1+(√x) ((√(y^2 −2)) )))=(x/(1+y(√x) ))  ((−1−(√x) ((√(y^2 −2)) ))/( (√x) ((√(y^2 −2)) )))=((1+y(√x) )/x)  ((−1)/( (√x) ((√(y^2 −2)) ))−1=(1/x)+(y/( (√x)))  (y/( (√x)))+(1/( (√x) ((√(y^2 −2)) ) ))=−1−(1/x)=−((x+1)/x)  (y/( (√x)))+(1/( (√x) ((√(y^2 −2)) ) ))=−(((x+1)/x))  ((y(√(y^2 −2)) +1)/( (√(y^2 −2))))=−((x+1)/( (√x)))  (((y(√(y^2 −2)) +1)/( (√(y^2 −2)))))^2 =(−((x+1)/( (√x))))^2   ((y^2 (y^2 −2)+1+2y(√(y^2 −2)))/(y^2 −2))=((x^2 +2x+1)/x)  ((y^4 −2y^2 +1+2y(√(y^2 −2)))/(y^2 −2))=x+(1/x)+2=x+(1/x)+1+1  y^4 −2y^2 +1+2y(√(y^2 −2)) =(y^2 +1)(y^2 −2)  y^4 −2y^2 +1+2y(√(y^2 −2)) =y^4 −y^2 −2  2y(√(y^2 −2)) =y^2 −3  4y^2 (y^2 −2)=y^4 −6y^2 +9  4y^4 −8y^2 −y^4 +6y^2 −9=0  3y^4 −2y^2 −9=0  y^2 =((2±(√(4+108)))/6)=((2±(√(112)))/6)=((1±2(√7))/3)  ∵ y^2  is non-negative  ∴ y^2 =((1+2(√7))/3)  (x/(x^( 2) +1))=(1/(x+(1/x)+1−1))=(1/(y^2 −1))  =(1/(((1+2(√7))/3)−1))=(3/(−2+2(√7)))∙((−2−2(√7))/(−2−2(√7)))  ((3(−2+2(√7) ))/(4−28))y=((6(−1+(√7) ))/(−24))=((1−(√7))/4)

Changedversionofthequestion:11+1x+x2x1+1+x+x2=111+x(x+1x1)1=x1+x(x+1x+1)Letx+1x+1=y2x+1x1=y2211x(y22)1+x(y22)=x1+yxx(y22)1+x(y22)=x1+yx1x(y22)x(y22)=1+yxx1x(y221=1x+yxyx+1x(y22)=11x=x+1xyx+1x(y22)=(x+1x)yy22+1y22=x+1x(yy22+1y22)2=(x+1x)2y2(y22)+1+2yy22y22=x2+2x+1xy42y2+1+2yy22y22=x+1x+2=x+1x+1+1y42y2+1+2yy22=(y2+1)(y22)y42y2+1+2yy22=y4y222yy22=y234y2(y22)=y46y2+94y48y2y4+6y29=03y42y29=0y2=2±4+1086=2±1126=1±273y2isnonnegativey2=1+273xx2+1=1x+1x+11=1y21=11+2731=32+272272273(2+27)428y=6(1+7)24=174

Commented by mnjuly1970 last updated on 16/Dec/22

very nice solution  sir Rasheed .thanks alot  for your effort.    that was my mistake⟨typo⟩     i modified it.

verynicesolutionsirRasheed.thanksalotforyoureffort.thatwasmymistaketypoimodifiedit.

Answered by Rasheed.Sindhi last updated on 17/Dec/22

Simpler way  (1/( 1+(√(1−x+x^( 2) )))) −(x/(1+(√(1+x+x^( 2) ))))=1  (x/(x^( 2) +1))=?  (x/(x^( 2) +1))=(1/y)⇒x^2 +1=xy  (1/( 1+(√(xy−x)))) −(x/(1+(√(xy+x))))=1  (1/( 1+(√x)(√(y−1)))) −(x/(1+(√x)(√(y+1))))=1  (1/( 1+(√x)(√(y−1)))) −1=(x/(1+(√x)(√(y+1))))  ((−(√x)(√(y−1)))/( 1+(√x)(√(y−1))))=(x/(1+(√x)(√(y+1))))  ((−1−(√x)(√(y−1)))/( (√x)(√(y−1))))=((1+(√x)(√(y+1)))/x)  ((−1)/( (√x)(√(y−1))))−1=(1/x)+((√(y+1))/( (√x)))  ((√(y+1))/( (√x)))+(1/( (√x)(√(y−1))))=−1−(1/x)  (((√(y+1)) (√(y−1)) +1)/( (√x)(√(y−1))))=((−x−1)/x)  ((((√(y+1)) (√(y−1)) +1)/( (√x)(√(y−1)))))^2 =(((−x−1)/x))^2   ((y^2 −1+1+2(√(y^2 −1)) )/(x(y−1)))=((x^2 +2x+1)/x^2 )  ((y^2 +2(√(y^2 −1)) )/(y−1))=((x^2 +2x+1)/x)=((xy+2x)/x)=y+2  y^2 +2(√(y^2 −1)) =(y+2)(y−1)=y^2 +y−2  2(√(y^2 −1)) =y−2  4y^2 −4=y^2 −4y+4  3y^2 +4y−8=0  y=((−4±(√(16+96)))/6)=((−4±(√(112)))/6)  y=((−4±4(√7))/6)=((−2±2(√7))/3)  ∵((−2+2(√7))/3) is extraneous root  ∴ y=((−2−2(√7))/3)  (x/(x^( 2) +1))=(1/y)=(3/(−2−2(√7)))∙((−2+2(√7))/(−2+2(√7)))          =((3(−2+2(√7) ))/(4−28))=((6(−1+(√7) ))/(−24))          =((1−(√7))/4)

Simplerway11+1x+x2x1+1+x+x2=1xx2+1=?xx2+1=1yx2+1=xy11+xyxx1+xy+x=111+xy1x1+xy+1=111+xy11=x1+xy+1xy11+xy1=x1+xy+11xy1xy1=1+xy+1x1xy11=1x+y+1xy+1x+1xy1=11xy+1y1+1xy1=x1x(y+1y1+1xy1)2=(x1x)2y21+1+2y21x(y1)=x2+2x+1x2y2+2y21y1=x2+2x+1x=xy+2xx=y+2y2+2y21=(y+2)(y1)=y2+y22y21=y24y24=y24y+43y2+4y8=0y=4±16+966=4±1126y=4±476=2±2732+273isextraneousrooty=2273xx2+1=1y=32272+272+27=3(2+27)428=6(1+7)24=174

Terms of Service

Privacy Policy

Contact: info@tinkutara.com