Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 183109 by cortano1 last updated on 20/Dec/22

  ∫_0 ^(π/2)  ((√(sin x+1))/( (√(cos x+1)))) dx =?

π/20sinx+1cosx+1dx=?

Answered by universe last updated on 20/Dec/22

   ∫_0 ^(π/2)   ((cos((π/4)−(x/2)) )/( cos(x/2) ))dx  ∫_0 ^(π/2)  ((cos(x/2)+sin(x/2)  )/(cos(x/2) ))dx  ∫_0 ^(π/2) (1+tan(x/2))dx

0π/2cos(π4x2)cosx2dx0π/2cosx2+sinx2cosx2dx0π/2(1+tanx2)dx

Commented by MJS_new last updated on 21/Dec/22

∫_0 ^(π/2) ((√(1+sin x))/( (√(1+cos x))))dx≈1.60  ∫_0 ^(π/2) (1+tan (x/2))dx≈2.26

π/201+sinx1+cosxdx1.60π/20(1+tanx2)dx2.26

Answered by MJS_new last updated on 21/Dec/22

∫_0 ^(π/2) ((√(1+sin x))/( (√(1+cos x))))dx=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =(√2)∫_0 ^1 ((t+1)/(t^2 +1))dt=  =(√2)[(1/2)ln (t^2 +1) +arctan t]_0 ^1 =  =((π(√2))/4)+((√2)/2)ln 2

π/201+sinx1+cosxdx=[t=tanx2dx=2dtt2+1]=210t+1t2+1dt==2[12ln(t2+1)+arctant]01==π24+22ln2

Commented by cortano1 last updated on 21/Dec/22

yess....

yess....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com