Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 183295 by ajfour last updated on 24/Dec/22

Commented by ajfour last updated on 24/Dec/22

Find R in terms of a and b.

$${Find}\:{R}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b}. \\ $$

Answered by ajfour last updated on 24/Dec/22

let common tangent x axis.  Where big circle touches it be  origin.  A(−p,0)   ;  B(q,0)  (p+q)^2 =4ab  k=b+(((a−b)/(a+b)))b=((2ab)/(a+b))  h=−p+((a(p+q))/(a+b))=((aq−bp)/(a+b))  M(h,−k)≡(((aq−bp)/(a+b)), −((2ab)/(a+b)))  Eq. of big circle: x^2 +(y−R)^2 =R^2   eq. of left tangent to big circle  y=−(x+p){(((((2ab)/(a+b))))/((a(p+q))/(a+b)))}  ⇒      y=−(x+p)(((2b)/(p+q)))  eq. of right tangent to big circle  y=(x−q){(((((2ab)/(a+b))))/((b(p+q))/(a+b)))}=(x−q)(((2a)/(p+q)))  R^2 =(((R+((2bp)/(p+q)))^2 )/(1+((4b^2 )/((p+q)^2 ))))=(((R+((2aq)/(p+q)))^2 )/(1+((4a^2 )/((p+q)^2 ))))  but  (p+q)^2 =4ab  ⇒  R^2 =(((2R(√(ab))+2bp)^2 )/(4b(a+b)))=(((2R(√(ab))+2aq)^2 )/(4a(a+b)))  ⇒  (R/( (√b)))((√(a+b))−(√a))=p          (R/( (√a)))((√(a+b))−(√b))=q  adding  R{(√((a/b)+1))−(√(a/b))+(√(1+(b/a)))−(√(b/a))}      =2(√(ab))  R=((2ab)/( ((√a)+(√b))(√(a+b))−(a+b)))

$${let}\:{common}\:{tangent}\:{x}\:{axis}. \\ $$$${Where}\:{big}\:{circle}\:{touches}\:{it}\:{be} \\ $$$${origin}. \\ $$$${A}\left(−{p},\mathrm{0}\right)\:\:\:;\:\:{B}\left({q},\mathrm{0}\right) \\ $$$$\left({p}+{q}\right)^{\mathrm{2}} =\mathrm{4}{ab} \\ $$$${k}={b}+\left(\frac{{a}−{b}}{{a}+{b}}\right){b}=\frac{\mathrm{2}{ab}}{{a}+{b}} \\ $$$${h}=−{p}+\frac{{a}\left({p}+{q}\right)}{{a}+{b}}=\frac{{aq}−{bp}}{{a}+{b}} \\ $$$${M}\left({h},−{k}\right)\equiv\left(\frac{{aq}−{bp}}{{a}+{b}},\:−\frac{\mathrm{2}{ab}}{{a}+{b}}\right) \\ $$$${Eq}.\:{of}\:{big}\:{circle}:\:{x}^{\mathrm{2}} +\left({y}−{R}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${eq}.\:{of}\:{left}\:{tangent}\:{to}\:{big}\:{circle} \\ $$$${y}=−\left({x}+{p}\right)\left\{\frac{\left(\frac{\mathrm{2}{ab}}{{a}+{b}}\right)}{\frac{{a}\left({p}+{q}\right)}{{a}+{b}}}\right\} \\ $$$$\Rightarrow\:\:\:\:\:\:{y}=−\left({x}+{p}\right)\left(\frac{\mathrm{2}{b}}{{p}+{q}}\right) \\ $$$${eq}.\:{of}\:{right}\:{tangent}\:{to}\:{big}\:{circle} \\ $$$${y}=\left({x}−{q}\right)\left\{\frac{\left(\frac{\mathrm{2}{ab}}{{a}+{b}}\right)}{\frac{{b}\left({p}+{q}\right)}{{a}+{b}}}\right\}=\left({x}−{q}\right)\left(\frac{\mathrm{2}{a}}{{p}+{q}}\right) \\ $$$${R}^{\mathrm{2}} =\frac{\left({R}+\frac{\mathrm{2}{bp}}{{p}+{q}}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\mathrm{4}{b}^{\mathrm{2}} }{\left({p}+{q}\right)^{\mathrm{2}} }}=\frac{\left({R}+\frac{\mathrm{2}{aq}}{{p}+{q}}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\mathrm{4}{a}^{\mathrm{2}} }{\left({p}+{q}\right)^{\mathrm{2}} }} \\ $$$${but}\:\:\left({p}+{q}\right)^{\mathrm{2}} =\mathrm{4}{ab}\:\:\Rightarrow \\ $$$${R}^{\mathrm{2}} =\frac{\left(\mathrm{2}{R}\sqrt{{ab}}+\mathrm{2}{bp}\right)^{\mathrm{2}} }{\mathrm{4}{b}\left({a}+{b}\right)}=\frac{\left(\mathrm{2}{R}\sqrt{{ab}}+\mathrm{2}{aq}\right)^{\mathrm{2}} }{\mathrm{4}{a}\left({a}+{b}\right)} \\ $$$$\Rightarrow\:\:\frac{{R}}{\:\sqrt{{b}}}\left(\sqrt{{a}+{b}}−\sqrt{{a}}\right)={p} \\ $$$$\:\:\:\:\:\:\:\:\frac{{R}}{\:\sqrt{{a}}}\left(\sqrt{{a}+{b}}−\sqrt{{b}}\right)={q} \\ $$$${adding} \\ $$$${R}\left\{\sqrt{\frac{{a}}{{b}}+\mathrm{1}}−\sqrt{\frac{{a}}{{b}}}+\sqrt{\mathrm{1}+\frac{{b}}{{a}}}−\sqrt{\frac{{b}}{{a}}}\right\} \\ $$$$\:\:\:\:=\mathrm{2}\sqrt{{ab}} \\ $$$${R}=\frac{\mathrm{2}{ab}}{\:\left(\sqrt{{a}}+\sqrt{{b}}\right)\sqrt{{a}+{b}}−\left({a}+{b}\right)} \\ $$

Commented by mr W last updated on 24/Dec/22

it can be simplified to  R=(((√(ab))((√a)+(√b)+(√(a+b))))/( (√(a+b))))

$${it}\:{can}\:{be}\:{simplified}\:{to} \\ $$$${R}=\frac{\sqrt{{ab}}\left(\sqrt{{a}}+\sqrt{{b}}+\sqrt{{a}+{b}}\right)}{\:\sqrt{{a}+{b}}} \\ $$

Answered by mr W last updated on 24/Dec/22

Commented by mr W last updated on 24/Dec/22

cos α=((a−b)/(a+b))  KF=KG=R  KD=a(√(2(1−cos α)))=((2a(√b))/( (√(a+b))))  similarly KE=((2b(√a))/( (√(a+b))))  DE=FD+GE=2R−DK−EK=2R−((2(√(ab))((√a)+(√b)))/( (√(a+b))))  DE=(√((a+b)^2 −(a−b)^2 ))=2(√(ab))  2R−((2(√(ab))((√a)+(√b)))/( (√(a+b))))=2(√(ab))  ⇒R=(((√(ab))((√(a+b))+(√a)+(√b)))/( (√(a+b))))

$$\mathrm{cos}\:\alpha=\frac{{a}−{b}}{{a}+{b}} \\ $$$${KF}={KG}={R} \\ $$$${KD}={a}\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)}=\frac{\mathrm{2}{a}\sqrt{{b}}}{\:\sqrt{{a}+{b}}} \\ $$$${similarly}\:{KE}=\frac{\mathrm{2}{b}\sqrt{{a}}}{\:\sqrt{{a}+{b}}} \\ $$$${DE}={FD}+{GE}=\mathrm{2}{R}−{DK}−{EK}=\mathrm{2}{R}−\frac{\mathrm{2}\sqrt{{ab}}\left(\sqrt{{a}}+\sqrt{{b}}\right)}{\:\sqrt{{a}+{b}}} \\ $$$${DE}=\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{{ab}} \\ $$$$\mathrm{2}{R}−\frac{\mathrm{2}\sqrt{{ab}}\left(\sqrt{{a}}+\sqrt{{b}}\right)}{\:\sqrt{{a}+{b}}}=\mathrm{2}\sqrt{{ab}} \\ $$$$\Rightarrow{R}=\frac{\sqrt{{ab}}\left(\sqrt{{a}+{b}}+\sqrt{{a}}+\sqrt{{b}}\right)}{\:\sqrt{{a}+{b}}} \\ $$

Commented by ajfour last updated on 24/Dec/22

Thanks Sir. Excellent way!

$${Thanks}\:{Sir}.\:{Excellent}\:{way}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com