Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 183307 by ajfour last updated on 24/Dec/22

Commented by ajfour last updated on 24/Dec/22

Find minimum length from one  parabola to the other.

$${Find}\:{minimum}\:{length}\:{from}\:{one} \\ $$$${parabola}\:{to}\:{the}\:{other}. \\ $$

Answered by mr W last updated on 24/Dec/22

Commented by mr W last updated on 25/Dec/22

P(p,p^2 )  M(a,−(c/2)) ⇒c≥−2a^2   tan θ=2p=((a−p)/(p^2 +(c/2)))  p^3 +(((c+1)/2))p−(a/2)=0  if (a^2 /(16))+(((c+1)^3 )/(216))≥0, i.e. c≥−1−3((a^2 /2))^(1/3) :  p=(((√((a^2 /(16))+(((c+1)^3 )/(216))))+(a/4)))^(1/3) −(((√((a^2 /(16))+(((c+1)^3 )/(216))))−(a/4)))^(1/3)   if (a^2 /(16))+(((c+1)^3 )/(216))<0, i.e. −2a^2 ≤c<−1−3((a^2 /2))^(1/3) :  p=2(√(−((c+1)/6))) sin {(π/3)−(1/3) sin^(−1) ((3a)/(2(c+1)))(√(−(6/(c+1))))}  d_(min) =2×PM=2(√((a−p)^2 +(p^2 +(c/2))^2 ))

$${P}\left({p},{p}^{\mathrm{2}} \right) \\ $$$${M}\left({a},−\frac{{c}}{\mathrm{2}}\right)\:\Rightarrow{c}\geqslant−\mathrm{2}{a}^{\mathrm{2}} \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p}=\frac{{a}−{p}}{{p}^{\mathrm{2}} +\frac{{c}}{\mathrm{2}}} \\ $$$${p}^{\mathrm{3}} +\left(\frac{{c}+\mathrm{1}}{\mathrm{2}}\right){p}−\frac{{a}}{\mathrm{2}}=\mathrm{0} \\ $$$${if}\:\frac{{a}^{\mathrm{2}} }{\mathrm{16}}+\frac{\left({c}+\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{216}}\geqslant\mathrm{0},\:{i}.{e}.\:{c}\geqslant−\mathrm{1}−\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}: \\ $$$${p}=\sqrt[{\mathrm{3}}]{\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{16}}+\frac{\left({c}+\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{216}}}+\frac{{a}}{\mathrm{4}}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{16}}+\frac{\left({c}+\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{216}}}−\frac{{a}}{\mathrm{4}}} \\ $$$${if}\:\frac{{a}^{\mathrm{2}} }{\mathrm{16}}+\frac{\left({c}+\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{216}}<\mathrm{0},\:{i}.{e}.\:−\mathrm{2}{a}^{\mathrm{2}} \leqslant{c}<−\mathrm{1}−\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}: \\ $$$${p}=\mathrm{2}\sqrt{−\frac{{c}+\mathrm{1}}{\mathrm{6}}}\:\mathrm{sin}\:\left\{\frac{\pi}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}{a}}{\mathrm{2}\left({c}+\mathrm{1}\right)}\sqrt{−\frac{\mathrm{6}}{{c}+\mathrm{1}}}\right\} \\ $$$${d}_{{min}} =\mathrm{2}×{PM}=\mathrm{2}\sqrt{\left({a}−{p}\right)^{\mathrm{2}} +\left({p}^{\mathrm{2}} +\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$

Commented by mr W last updated on 24/Dec/22

Commented by mr W last updated on 24/Dec/22

Commented by mr W last updated on 25/Dec/22

Commented by mr W last updated on 25/Dec/22

Commented by ajfour last updated on 25/Dec/22

Thank you greatly Sir.

$${Thank}\:{you}\:{greatly}\:{Sir}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com