Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 183320 by mathlove last updated on 25/Dec/22

∫^(π/2) _0 (dx/(cox(x/2)∙cos(x/2^2 )∙∙∙∙∙cos(x/2^n )))=?

$$\underset{\mathrm{0}} {\int}^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{cox}\frac{{x}}{\mathrm{2}}\centerdot{cos}\frac{{x}}{\mathrm{2}^{\mathrm{2}} }\centerdot\centerdot\centerdot\centerdot\centerdot{cos}\frac{{x}}{\mathrm{2}^{{n}} }}=? \\ $$

Answered by Vynho last updated on 28/Dec/22

∫_0 ^(π/2) (dx/(Π_(k=1) ^n cos((x/2^k ))))  ln(Π_(k=1) ^n cos((x/2^k )))=Σ_(k=1) ^n ln(cos((x/2^k )))  Π_(k=1) ^n cos((x/a^k ))+isin((x/a^k ))=Π_(k=1) ^n e^(i(x/a^k ))   U_n =Π_(k=1) ^n e^(ix((1/a))^k )   ln(U_n )=Σ_(k=1) ^n ln(e^(ix((1/a))^k ) )=ixΣ_(k=1) ^n ((1/a))^k     ln(U_n )=ix(1/a).((1−((1/a))^n )/(1−(1/a)))=ix.((1−((1/a))^n )/(a−1))  U_n =e^(ix((1−((1/a))^n )/(a−1)))   ∫_0 ^(π/2) e^(−ix((1−((1/a))^n )/(a−1))) dx=∫_0 ^(π/2) e^(−ixθ) dx=(1/(−iθ))[e^(−ixθ) ]_0 ^(π/2)   I=(i/θ)[e^(−i(π/2)θ) −1]=(1/θ)[icos((π/2)θ)+sin((π/2)θ)]  ∫_0 ^(π/2) (dx/(Π_(k=1) ^n cos((x/2^k ))))=(1/θ)sin((π/2)θ)   θ=((1−((1/a))^n )/(a−1))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)} \\ $$$${ln}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left({cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left(\frac{{x}}{{a}^{{k}} }\right)+{isin}\left(\frac{{x}}{{a}^{{k}} }\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{e}^{{i}\frac{{x}}{{a}^{{k}} }} \\ $$$${U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{e}^{{ix}\left(\frac{\mathrm{1}}{{a}}\right)^{{k}} } \\ $$$${ln}\left({U}_{{n}} \right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{ln}\left({e}^{{ix}\left(\frac{\mathrm{1}}{{a}}\right)^{{k}} } \right)={ix}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{a}}\right)^{{k}} \\ $$$$ \\ $$$${ln}\left({U}_{{n}} \right)={ix}\frac{\mathrm{1}}{{a}}.\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{{a}}\right)^{{n}} }{\mathrm{1}−\frac{\mathrm{1}}{{a}}}={ix}.\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{{a}}\right)^{{n}} }{{a}−\mathrm{1}} \\ $$$${U}_{{n}} ={e}^{{ix}\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{{a}}\right)^{{n}} }{{a}−\mathrm{1}}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{−{ix}\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{{a}}\right)^{{n}} }{{a}−\mathrm{1}}} {dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{−{ix}\theta} {dx}=\frac{\mathrm{1}}{−{i}\theta}\left[{e}^{−{ix}\theta} \right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${I}=\frac{{i}}{\theta}\left[{e}^{−{i}\frac{\pi}{\mathrm{2}}\theta} −\mathrm{1}\right]=\frac{\mathrm{1}}{\theta}\left[{icos}\left(\frac{\pi}{\mathrm{2}}\theta\right)+{sin}\left(\frac{\pi}{\mathrm{2}}\theta\right)\right] \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)}=\frac{\mathrm{1}}{\theta}{sin}\left(\frac{\pi}{\mathrm{2}}\theta\right)\: \\ $$$$\theta=\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{{a}}\right)^{{n}} }{{a}−\mathrm{1}} \\ $$

Commented by Vynho last updated on 28/Dec/22

a=2

$${a}=\mathrm{2} \\ $$

Commented by mathlove last updated on 03/Jan/23

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com