Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 183324 by Acem last updated on 25/Dec/22

Find the minimum distance between C_f  , C_g    ; C_f  : y^2 = 4ax , C_g : x^2 + y^2 −24ay+ 128a^2 = 0

$${Find}\:{the}\:{minimum}\:{distance}\:{between}\:{C}_{{f}} \:,\:{C}_{{g}} \\ $$$$\:;\:{C}_{{f}} \::\:{y}^{\mathrm{2}} =\:\mathrm{4}{ax}\:,\:{C}_{{g}} :\:{x}^{\mathrm{2}} +\:{y}^{\mathrm{2}} −\mathrm{24}{ay}+\:\mathrm{128}{a}^{\mathrm{2}} =\:\mathrm{0} \\ $$

Commented by Acem last updated on 25/Dec/22

 No matter if  ∀a ∈ R^(∗+)  or R^(∗−)

$$\:{No}\:{matter}\:{if}\:\:\forall{a}\:\in\:\mathbb{R}^{\ast+} \:{or}\:\mathbb{R}^{\ast−} \\ $$

Answered by mr W last updated on 25/Dec/22

Commented by mr W last updated on 25/Dec/22

Commented by mr W last updated on 25/Dec/22

a≠0, assume a>0  y^2 =4ax  x^2 +(y−12a)^2 =(4a)^2   A(0,12a)  r=4a  say P((p^2 /(4a)), p)  tan θ=(dy/dx)=((2a)/y)=((2a)/p)=((p^2 /(4a))/(12a−p))  ⇒((p/a))^3 +8((p/a))−96=0  ⇒(p/a)=4  R=AP=(√(((p^2 /(4a)))^2 +(12a−p)^2 ))=4(√5)∣a∣  d_(min) =R−r=4((√5)−1)∣a∣

$${a}\neq\mathrm{0},\:{assume}\:{a}>\mathrm{0} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{ax} \\ $$$${x}^{\mathrm{2}} +\left({y}−\mathrm{12}{a}\right)^{\mathrm{2}} =\left(\mathrm{4}{a}\right)^{\mathrm{2}} \\ $$$${A}\left(\mathrm{0},\mathrm{12}{a}\right) \\ $$$${r}=\mathrm{4}{a} \\ $$$${say}\:{P}\left(\frac{{p}^{\mathrm{2}} }{\mathrm{4}{a}},\:{p}\right) \\ $$$$\mathrm{tan}\:\theta=\frac{{dy}}{{dx}}=\frac{\mathrm{2}{a}}{{y}}=\frac{\mathrm{2}{a}}{{p}}=\frac{\frac{{p}^{\mathrm{2}} }{\mathrm{4}{a}}}{\mathrm{12}{a}−{p}} \\ $$$$\Rightarrow\left(\frac{{p}}{{a}}\right)^{\mathrm{3}} +\mathrm{8}\left(\frac{{p}}{{a}}\right)−\mathrm{96}=\mathrm{0} \\ $$$$\Rightarrow\frac{{p}}{{a}}=\mathrm{4} \\ $$$${R}={AP}=\sqrt{\left(\frac{{p}^{\mathrm{2}} }{\mathrm{4}{a}}\right)^{\mathrm{2}} +\left(\mathrm{12}{a}−{p}\right)^{\mathrm{2}} }=\mathrm{4}\sqrt{\mathrm{5}}\mid{a}\mid \\ $$$${d}_{{min}} ={R}−{r}=\mathrm{4}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\mid{a}\mid \\ $$

Commented by Acem last updated on 25/Dec/22

Thx Sir!

$${Thx}\:{Sir}! \\ $$

Answered by Acem last updated on 25/Dec/22

 For a> 0   C_(circle) (0, 12a) , R= 4a   y= 2(√(a ))(√x) ^(The upper part of the parabola)    Assume that x= ak^2  then y= 2ak  , P(ak^2 , 2ak)∈ C_f    The normal △ passes through P and the center of the circle C  △: y+ xk = 2ak+ ak^3 = 12a_(x_c = 0)  ⇔ k^3 +2k−12=0   ⇒ (k−2)(k^2 +2k+6)_(No solution in R) = 0 ⇒ k= 2   ⇒P(4a, 4a) , T∈ C_g  , △     ∣TP∣_(min. Dis.) = (√((−4a)^2 +(12a−4a)^2 )) − 4a= 4a((√5)−1) uni.   ; ∣TP∣= ∣CP∣ − R

$$\:{For}\:{a}>\:\mathrm{0} \\ $$$$\:{C}_{{circle}} \left(\mathrm{0},\:\mathrm{12}{a}\right)\:,\:{R}=\:\mathrm{4}{a} \\ $$$$\:{y}=\:\mathrm{2}\sqrt{{a}\:}\sqrt{{x}}\:\:^{{The}\:{upper}\:{part}\:{of}\:{the}\:{parabola}} \\ $$$$\:{Assume}\:{that}\:{x}=\:{ak}^{\mathrm{2}} \:{then}\:{y}=\:\mathrm{2}{ak}\:\:,\:{P}\left({ak}^{\mathrm{2}} ,\:\mathrm{2}{ak}\right)\in\:{C}_{{f}} \\ $$$$\:{The}\:{normal}\:\bigtriangleup\:{passes}\:{through}\:{P}\:{and}\:{the}\:{center}\:{of}\:{the}\:{circle}\:{C} \\ $$$$\bigtriangleup:\:{y}+\:{xk}\:=\:\mathrm{2}{ak}+\:{ak}^{\mathrm{3}} =\:\mathrm{12}{a}_{{x}_{{c}} =\:\mathrm{0}} \:\Leftrightarrow\:{k}^{\mathrm{3}} +\mathrm{2}{k}−\mathrm{12}=\mathrm{0} \\ $$$$\:\Rightarrow\:\left({k}−\mathrm{2}\right)\underset{{No}\:{solution}\:{in}\:\mathbb{R}} {\underbrace{\left({k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{6}\right)}}=\:\mathrm{0}\:\Rightarrow\:{k}=\:\mathrm{2} \\ $$$$\:\Rightarrow{P}\left(\mathrm{4}{a},\:\mathrm{4}{a}\right)\:,\:{T}\in\:{C}_{{g}} \:,\:\bigtriangleup \\ $$$$ \\ $$$$\:\mid{TP}\mid_{{min}.\:{Dis}.} =\:\sqrt{\left(−\mathrm{4}{a}\right)^{\mathrm{2}} +\left(\mathrm{12}{a}−\mathrm{4}{a}\right)^{\mathrm{2}} }\:−\:\mathrm{4}{a}=\:\mathrm{4}{a}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\:{uni}. \\ $$$$\:;\:\mid{TP}\mid=\:\mid{CP}\mid\:−\:{R} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com