Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 183350 by Spillover last updated on 25/Dec/22

Find   (a)lim_(x→∞)    ((3x+2)/(x^2 −x+1))  (b)lim_(x→∞)   ((√(x^2 −1))/(2x+1))  (c)lim_(x→5)  (((√(3x+1)) −4)/(x−5))

Find(a)limx3x+2x2x+1(b)limxx212x+1(c)limx53x+14x5

Commented by CElcedricjunior last updated on 25/Dec/22

a)0  b)(1/2)  c)(3/8)

a)0b)12c)38

Commented by Spillover last updated on 25/Dec/22

thank you

thankyou

Answered by Spillover last updated on 25/Dec/22

  (a)lim_(x→∞)   ((3x+2)/(x^2 −x+1))    Divide by x^2  up and down  lim_(x→∞)  (((3/x)+(2/x))/(1−(1/x)+(1/x^2 )))     x→∞   x=0  ((0+0)/(1−0+0)) = 0

(a)limx3x+2x2x+1Dividebyx2upanddownlimx3x+2x11x+1x2xx=00+010+0=0

Answered by Spillover last updated on 25/Dec/22

(b)lim_(x→∞)   ((√(x^2 −1))/(2x+1))  divide by x  up and down  lim_(x→∞)   ((√(x^2 −1))/(2x+1))= lim_(x→∞) (((√(x^2 −1))/x)/((2x+1)/x))  lim_(x→∞) ((√(1−(1/x^2 )))/(2+(1/x)))      x→∞               ((√(1−0))/(2+0))   =(1/2)

(b)limxx212x+1dividebyxupanddownlimxx212x+1=limxx21x2x+1xlimx11x22+1xx102+0=12

Answered by Spillover last updated on 25/Dec/22

(c)lim_(x→5)  (((√(3x+1)) −4)/(x−5))  Rationalize numerator   lim_(x→5)  (((√(3x+1)) −4)/(x−5))×(((√(3x+1)) +4)/( (√(3x+1)) +4))  lim_(x→5)    ((3x+1−16)/((x−5)((√(3x+1)) +4)))  lim_(x→5)  (3/( (√(3x+1)) +4))      x→5    x=5   (3/( (√(3×5+1)) +4)) =(3/8)

(c)limx53x+14x5Rationalizenumeratorlimx53x+14x5×3x+1+43x+1+4limx53x+116(x5)(3x+1+4)limx533x+1+4x5x=533×5+1+4=38

Terms of Service

Privacy Policy

Contact: info@tinkutara.com