All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 183450 by cortano1 last updated on 26/Dec/22
∫x20f(2t3−t2−6)dt=lnxthenf(106)=?
Answered by mahdipoor last updated on 26/Dec/22
ddxL=ddxR⇒f(2x6−x2−6)×2x=1xx=2⇒f(106)=18−−−−−−−ddx∫0g(x)f(h(t))dt=∫g(x)g(x+Δx)f(g(t))dtΔxΔx→0⇒(get∫f(h(t))dt=k(t))⇒=k(g(x+Δx))−k(g(x))Δx=k′(g(x))g′(x)=f(h(g(x)))g′(x)⇒h(t)=2t3−t2−6g(x)=x2⇒f(2x6−x4−6)×2x
Answered by mr W last updated on 26/Dec/22
sayf(2t3−t2−6)=g(t)∫0x2g(t)dt=lnxddx[∫0x2g(t)dt]=ddx(lnx)g(x2)(2x)=1x⇒g(x2)=12x2⇒g(t)=12t⇒f(2t3−t2−6)=12tset2t3−t2−6=1062t3−t2−112=0(t−4)(2t2+7t+28)=0⇒t=4⇒f(106)=12×4=18✓
Terms of Service
Privacy Policy
Contact: info@tinkutara.com