Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 183485 by Gamil last updated on 26/Dec/22

 L=lim_(x→0)  ((2sin x −2tan x +x^3 )/(6x−2sin 3x −9x^3 ))    L= ((lim_(x→0)  ((2sin x −2tan x +x^3 )/x^5 ))/(lim_(x→0) ((6x−2sin 3x −9x^3 )/x^5 ))) = (L_1 /L_2 )

L=limx02sinx2tanx+x36x2sin3x9x3L=limx02sinx2tanx+x3x5limx06x2sin3x9x3x5=L1L2

Commented by CElcedricjunior last updated on 26/Dec/22

l=lim_(x→0) ((2sinx−2tanx+x^3 )/(6x−2sin3x−9x^3 ))=(0/0)=fi  to apply hospital  lim_(x→0) ((2cosx−2(1+tan^2 x)+3x^2 )/(6−6cos3x−27x^2 ))=(0/0)=fi  lim_(x→0) ((−2sinx−4tanx(1+tan^2 x)+6x)/(18sin3x −54x))=(0/0)=fi  lim_(x→0) ((−2cosx−4(1+tan^2 x)^2 −8tan^2 x(1+tan^2 x)+6)/(54cos3x−54))=(0/0)=fi  lim_(x→0) ((2sinx−8tanx(1+tan^2 x)^3 −16tanx(1+tan^2 x)^2 −16tan^3 x(1+tan^2 x))/(−162sin3x))  lim_(x→0) (((2/1)×((sinx)/x)−8 ((tanx)/x)×(1+tan^2 x)^3 −16((tanx)/x)(1+tan^2 x)−((16tan^3 )/x)×(1+tan^2 x))/(−486 ((sin3x)/(3x))))  l=((2−8−16+0)/(−486))=((22)/(486))=((11)/(243))  (2)

l=limx02sinx2tanx+x36x2sin3x9x3=00=fitoapplyhospitallimx02cosx2(1+tanx2)+3x266cos3x27x2=00=filimx02sinx4tanx(1+tanx2)+6x18sin3x54x=00=filimx02cosx4(1+tanx2)28tanx2(1+tanx2)+654cos3x54=00=filimx02sinx8tanx(1+tanx2)316tanx(1+tanx2)216tanx3(1+tanx2)162sin3xlimx021×sinxx8tanxx×(1+tanx2)316tanxx(1+tanx2)16tan3x×(1+tanx2)486sin3x3xl=2816+0486=22486=11243(2)

Answered by CElcedricjunior last updated on 26/Dec/22

l=((lim_(x→0) ((2sinx−2tanx+x^3 )/x^5 ))/(lim_(x→0) ((6x−2sin3x−9x^3 )/x^5 )))  =lim_(x→0) ((2sinx−2tanx+x^3 )/(6x−2sin3x−9x^3 ))=(0/0)fi  to apply hospital  =lim_(x→0) ((2cosx−2(1+tan^2 x)+3x^2 )/(6−6cos3x−27x^2 ))=(0/0)fi  =lim_(x→0) ((−2sinx−4tanx(1+tan^2 x)+6x)/(+18sin3x−54x))=(0/0) fi  =lim_(x→0) ((−2cosx−4(1+tan^2 x)^2 −8tan^2 (1+tan^2 x)+6)/(54cos3x−54))=(0/0)=fi  =lim_(x→0) ((2sinx−8tanx(1+tan^2 x)^2 −16tan(1+tan^2 x)^2 −16tan^2 (1+tan^2 x))/(−164sin3x))  =lim_(x→0) ((2((sinx)/x)−8((tanx)/x)(1+tan^2 x)−16((tanx)/x)(1+tan^2 x)^2 −16((tan^2 x)/x)(1+tan^2 x))/(−492((sin3x)/(3x))))  l=((2−8−16)/(−492))=((22)/(492))=((11)/(246))  l=((lim_(x→0) ((2sinx−2tanx+x^3 )/x^5 ))/(lim_(x→0) ((6x−2sin3x−9x^3 )/x^5 )))  =lim_(x→0) ((2sinx−2tanx+x^3 )/(6x−2sin3x−9x^3 ))=(0/0)fi  to apply hospital  =lim_(x→0) ((2cosx−2(1+tan^2 x)+3x^2 )/(6−6cos3x−27x^2 ))=(0/0)fi  =lim_(x→0) ((−2sinx−4tanx(1+tan^2 x)+6x)/(+18sin3x−54x))=(0/0) fi  =lim_(x→0) ((−2cosx−4(1+tan^2 x)^2 −8tan^2 (1+tan^2 x)+6)/(54cos3x−54))=(0/0)=fi  =lim_(x→0) ((2sinx−8tanx(1+tan^2 x)^2 −16tan(1+tan^2 x)^2 −16tan^2 (1+tan^2 x))/(−164sin3x))  =lim_(x→0) ((2((sinx)/x)−8((tanx)/x)(1+tan^2 x)−16((tanx)/x)(1+tan^2 x)^2 −16((tan^2 x)/x)(1+tan^2 x))/(−492((sin3x)/(3x))))  l=((2−8−16)/(−492))=((22)/(492))=((11)/(246))    l>    l>

l=limx02sinx2tanx+x3x5limx06x2sin3x9x3x5=limx02sinx2tanx+x36x2sin3x9x3=00fitoapplyhospital=limx02cosx2(1+tanx2)+3x266cos3x27x2=00fi=limx02sinx4tanx(1+tanx2)+6x+18sin3x54x=00fi=limx02cosx4(1+tanx2)28tan2(1+tanx2)+654cos3x54=00=fi=limx02sinx8tanx(1+tanx2)216tan(1+tanx2)216tan2(1+tanx2)164sin3x=limx02sinxx8tanxx(1+tanx2)16tanxx(1+tanx2)216tanx2x(1+tanx2)492sin3x3xl=2816492=22492=11246l=limx02sinx2tanx+x3x5limx06x2sin3x9x3x5=limx02sinx2tanx+x36x2sin3x9x3=00fitoapplyhospital=limx02cosx2(1+tanx2)+3x266cos3x27x2=00fi=limx02sinx4tanx(1+tanx2)+6x+18sin3x54x=00fi=limx02cosx4(1+tanx2)28tan2(1+tanx2)+654cos3x54=00=fi=limx02sinx8tanx(1+tanx2)216tan(1+tanx2)216tan2(1+tanx2)164sin3x=limx02sinxx8tanxx(1+tanx2)16tanxx(1+tanx2)216tanx2x(1+tanx2)492sin3x3xl=2816492=22492=11246l>l>

Commented by Ar Brandon last updated on 26/Dec/22

C'est mieux ainsi ������

Answered by Ar Brandon last updated on 26/Dec/22

L=lim_(x→0) ((2sinx−2tanx+x^3 )/(6x−2sin3x−9x^3 ))     [sinx→x−(x^3 /(3!))+(x^5 /(5!)): tanx→x+(x^3 /3)+((2x^5 )/(15))]      =lim_(x→0) ((2(x−(x^3 /6)+(x^5 /(120)))−2(x+(x^3 /3)+((2x^5 )/(15)))+x^3 )/(6x−2(3x−((27x^3 )/6)+((243x^5 )/(120)))−9x^3 ))      =lim_(x→0) ((−(1/4)x^5 )/(−((243)/(60))x^5 ))=(5/(81))

L=limx02sinx2tanx+x36x2sin3x9x3[sinxxx33!+x55!:tanxx+x33+2x515]=limx02(xx36+x5120)2(x+x33+2x515)+x36x2(3x27x36+243x5120)9x3=limx014x524360x5=581

Terms of Service

Privacy Policy

Contact: info@tinkutara.com