All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 183559 by cortano1 last updated on 27/Dec/22
∫∞1dxx2+x=?
Answered by greougoury555 last updated on 27/Dec/22
G=∫1∞dxx2+x=∫1∞2duu3+1=13[∫1∞(2u+1−2u−4u2−u+1)du]=13[2ln∣u+1∣−∫1∞2(u−12)−3(u−12)2+34du]=13[2ln∣u+1∣−ln((u−12)2+34)+23tan−1(2(u−12)3)]1∞=13[ln∣(u+1)2u2−u+1∣+23tan−1(2u−13)]1∞=2π33−ln43=2π39−ln43
Terms of Service
Privacy Policy
Contact: info@tinkutara.com