Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 183669 by mnjuly1970 last updated on 28/Dec/22

       f(x)= (x/(1 + x + x^( 2) ))         min_( f)  = ?

$$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:\frac{{x}}{\mathrm{1}\:+\:{x}\:+\:{x}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:{min}_{\:{f}} \:=\:? \\ $$

Answered by manolex last updated on 28/Dec/22

f(x)=(1/((1/x)+1+x))  (1/x)+x  ≫2  (1/x)+x+1≫3  (1/((1/x)+x+1))≪(1/3)   is max     l_(x→∞) imf(x)=         (1/((1/∞)+1+∞))=(1/(0+1+∞))=(1/∞)=0   correction  x⟨0  x+(1/x)≪−2  x+(1/x)+1≪−1  (1/(x+(1/x)+1))≫−1  −1≪f(x)≪(1/3)  min=−1

$${f}\left({x}\right)=\frac{\mathrm{1}}{\frac{\mathrm{1}}{{x}}+\mathrm{1}+{x}} \\ $$$$\frac{\mathrm{1}}{{x}}+{x}\:\:\gg\mathrm{2} \\ $$$$\frac{\mathrm{1}}{{x}}+{x}+\mathrm{1}\gg\mathrm{3} \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{{x}}+{x}+\mathrm{1}}\ll\frac{\mathrm{1}}{\mathrm{3}}\:\:\:{is}\:{max}\:\:\: \\ $$$${l}_{{x}\rightarrow\infty} {imf}\left({x}\right)=\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{1}}{\infty}+\mathrm{1}+\infty}=\frac{\mathrm{1}}{\mathrm{0}+\mathrm{1}+\infty}=\frac{\mathrm{1}}{\infty}=\mathrm{0}\: \\ $$$${correction} \\ $$$${x}\langle\mathrm{0} \\ $$$${x}+\frac{\mathrm{1}}{{x}}\ll−\mathrm{2} \\ $$$${x}+\frac{\mathrm{1}}{{x}}+\mathrm{1}\ll−\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}+\mathrm{1}}\gg−\mathrm{1} \\ $$$$−\mathrm{1}\ll{f}\left({x}\right)\ll\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${min}=−\mathrm{1} \\ $$

Commented by manolex last updated on 28/Dec/22

thanks,Sir W, for correction

$${thanks},{Sir}\:{W},\:{for}\:{correction} \\ $$

Answered by mr W last updated on 28/Dec/22

if x=0, f(x)=0  for x≠0:  f(x)=(1/(x+(1/x)+1))  for x>0:  f(x)=(1/(x+(1/x)+1))≤(1/(2+1))=(1/3)  for x<0:  f(x)=(1/(x+(1/x)+1))=(1/(−(−x+(1/(−x)))+1))≥(1/(−2+1))=−1  ⇒−1≤f(x)≤(1/3)  i.e. max. f(x)=(1/3) and min. f(x)=−1

$${if}\:{x}=\mathrm{0},\:{f}\left({x}\right)=\mathrm{0} \\ $$$${for}\:{x}\neq\mathrm{0}: \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}+\mathrm{1}} \\ $$$${for}\:{x}>\mathrm{0}: \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}+\mathrm{1}}\leqslant\frac{\mathrm{1}}{\mathrm{2}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${for}\:{x}<\mathrm{0}: \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}+\mathrm{1}}=\frac{\mathrm{1}}{−\left(−{x}+\frac{\mathrm{1}}{−{x}}\right)+\mathrm{1}}\geqslant\frac{\mathrm{1}}{−\mathrm{2}+\mathrm{1}}=−\mathrm{1} \\ $$$$\Rightarrow−\mathrm{1}\leqslant{f}\left({x}\right)\leqslant\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${i}.{e}.\:{max}.\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:{and}\:{min}.\:{f}\left({x}\right)=−\mathrm{1} \\ $$

Answered by Frix last updated on 28/Dec/22

f′(x)=((1−x^2 )/((1+x+x^2 )^2 ))  f′′(x)=−((2(1+3x−x^3 ))/((1+x+x^2 )))  f′(x)=0 ⇒ x_1 =−1∧x_2 =1  f′′(−1)=2>0 ⇒ minimum is −1 at x=−1  f′′(1)=−(2/9) ⇒ maximum is (1/3) at x=1

$${f}'\left({x}\right)=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${f}''\left({x}\right)=−\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{3}{x}−{x}^{\mathrm{3}} \right)}{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)} \\ $$$${f}'\left({x}\right)=\mathrm{0}\:\Rightarrow\:{x}_{\mathrm{1}} =−\mathrm{1}\wedge{x}_{\mathrm{2}} =\mathrm{1} \\ $$$${f}''\left(−\mathrm{1}\right)=\mathrm{2}>\mathrm{0}\:\Rightarrow\:\mathrm{minimum}\:\mathrm{is}\:−\mathrm{1}\:\mathrm{at}\:{x}=−\mathrm{1} \\ $$$${f}''\left(\mathrm{1}\right)=−\frac{\mathrm{2}}{\mathrm{9}}\:\Rightarrow\:\mathrm{maximum}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{at}\:{x}=\mathrm{1} \\ $$

Answered by manxsol last updated on 28/Dec/22

  a  ≪ (x/(1+x+x^2 ))≪b  a≪(x/(1+x+x^2 ))  ((a+ax+ax^2 −x)/(1+x+x^2 )) ≪0  ax^2 +(a−1)x+a≪0  △=(a−1)^2 −4a^2 ≫0  (a−1−2a)(a−1+2a)≫0  (−a−1)(3a−1)≫0  (a+1)(3a−1)≪0  −1≪a≪(1/3)  min f(x)=−1

$$ \\ $$$${a}\:\:\ll\:\frac{{x}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\ll{b} \\ $$$${a}\ll\frac{{x}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} } \\ $$$$\frac{{a}+{ax}+{ax}^{\mathrm{2}} −{x}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:\ll\mathrm{0} \\ $$$${ax}^{\mathrm{2}} +\left({a}−\mathrm{1}\right){x}+{a}\ll\mathrm{0} \\ $$$$\bigtriangleup=\left({a}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{a}^{\mathrm{2}} \gg\mathrm{0} \\ $$$$\left({a}−\mathrm{1}−\mathrm{2}{a}\right)\left({a}−\mathrm{1}+\mathrm{2}{a}\right)\gg\mathrm{0} \\ $$$$\left(−{a}−\mathrm{1}\right)\left(\mathrm{3}{a}−\mathrm{1}\right)\gg\mathrm{0} \\ $$$$\left({a}+\mathrm{1}\right)\left(\mathrm{3}{a}−\mathrm{1}\right)\ll\mathrm{0} \\ $$$$−\mathrm{1}\ll{a}\ll\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${min}\:{f}\left({x}\right)=−\mathrm{1} \\ $$$$ \\ $$

Commented by mr W last updated on 29/Dec/22

nice approach!

$${nice}\:{approach}! \\ $$

Commented by manxsol last updated on 29/Dec/22

following his vision, thanks

$${following}\:{his}\:{vision},\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com