All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 183706 by cortano1 last updated on 29/Dec/22
A=∫1+cos2x1+sin4xdx
Answered by Ar Brandon last updated on 29/Dec/22
A=∫1+cos2x1+sin4xdx=∫sec4x+sec2xsec4x+tan4xdx=∫(tan2x+2)sec2x2tan4x+2tan2x+1dx=∫t2+22t4+2t2+1dt=12∫1+222(t2+12)+1−222(t2−12)t4+t2+12dt=1+224∫t2+12t4+t2+12dt+1−224∫t2−12t4+t2+12dt=1+224∫1+12t2t2+1+12t2dt+1−224∫1−12t2t2+1+12t2dt=1+224∫1+12t2(t−12t)2+1+22dt+1−224∫1−12t2(t+12t)2+1−22dt=1+224∫duu2+2+22+1−224∫dvv2+2−22=1+224⋅22+2arctan(u22+2)+1−224⋅22−2arctan(v22−2)+C=1+22422+2arctan(2tan2x−12tanx22+2)+1−22422−2arctan(2tan2x+12tanx22−2)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com