Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 183706 by cortano1 last updated on 29/Dec/22

    A=∫ ((1+cos^2 x)/(1+sin^4 x)) dx

A=1+cos2x1+sin4xdx

Answered by Ar Brandon last updated on 29/Dec/22

A=∫((1+cos^2 x)/(1+sin^4 x))dx=∫((sec^4 x+sec^2 x)/(sec^4 x+tan^4 x))dx=∫(((tan^2 x+2)sec^2 x)/(2tan^4 x+2tan^2 x+1))dx      =∫((t^2 +2)/(2t^4 +2t^2 +1))dt=(1/2)∫((((1+2(√2))/2)(t^2 +(1/( (√2))))+((1−2(√2))/2)(t^2 −(1/( (√2)))))/(t^4 +t^2 +(1/2)))dt      =((1+2(√2))/4)∫((t^2 +(1/( (√2))))/(t^4 +t^2 +(1/( 2))))dt+((1−2(√2))/4)∫((t^2 −(1/( (√2))))/(t^4 +t^2 +(1/( 2))))dt      =((1+2(√2))/4)∫((1+(1/( (√2)t^2 )))/(t^2 +1+(1/( 2t^2 ))))dt+((1−2(√2))/4)∫((1−(1/( (√2)t^2 )))/(t^2 +1+(1/( 2t^2 ))))dt      =((1+2(√2))/4)∫((1+(1/( (√2)t^2 )))/((t−(1/( (√2)t)))^2 +1+(2/( (√2)))))dt+((1−2(√2))/4)∫((1−(1/( (√2)t^2 )))/((t+(1/( (√2)t)))^2 +1−(2/( (√2)))))dt      =((1+2(√2))/4)∫(du/(u^2 +(((√2)+2)/( (√2)))))+((1−2(√2))/4)∫(dv/(v^2 +(((√2)−2)/( (√2)))))      =((1+2(√2))/4)∙(√((√2)/( (√2)+2)))arctan(u(√((√2)/( (√2)+2))))+((1−2(√2))/4)∙(√((√2)/( (√2)−2)))arctan(v(√((√2)/( (√2)−2))))+C      =((1+2(√2))/4)(√((√2)/( (√2)+2)))arctan((((√2)tan^2 x−1)/( (√2)tanx))(√((√2)/( (√2)+2))))+((1−2(√2))/4)(√((√2)/( (√2)−2)))arctan((((√2)tan^2 x+1)/( (√2)tanx))(√((√2)/( (√2)−2))))+C

A=1+cos2x1+sin4xdx=sec4x+sec2xsec4x+tan4xdx=(tan2x+2)sec2x2tan4x+2tan2x+1dx=t2+22t4+2t2+1dt=121+222(t2+12)+1222(t212)t4+t2+12dt=1+224t2+12t4+t2+12dt+1224t212t4+t2+12dt=1+2241+12t2t2+1+12t2dt+1224112t2t2+1+12t2dt=1+2241+12t2(t12t)2+1+22dt+1224112t2(t+12t)2+122dt=1+224duu2+2+22+1224dvv2+222=1+22422+2arctan(u22+2)+1224222arctan(v222)+C=1+22422+2arctan(2tan2x12tanx22+2)+1224222arctan(2tan2x+12tanx222)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com