Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 183746 by ali009 last updated on 29/Dec/22

find x  x^4 −x^3 −19x^2 +93x−128=0

$${find}\:{x} \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{19}{x}^{\mathrm{2}} +\mathrm{93}{x}−\mathrm{128}=\mathrm{0} \\ $$

Commented by Frix last updated on 29/Dec/22

No useable exact solution, you can only  approximate.

$$\mathrm{No}\:\mathrm{useable}\:\mathrm{exact}\:\mathrm{solution},\:\mathrm{you}\:\mathrm{can}\:\mathrm{only} \\ $$$$\mathrm{approximate}. \\ $$

Commented by Michaelfaraday last updated on 29/Dec/22

this question has no real root but you   can use NRIM.

$${this}\:{question}\:{has}\:{no}\:{real}\:{root}\:{but}\:{you}\: \\ $$$${can}\:{use}\:{NRIM}. \\ $$$$ \\ $$

Commented by mr W last updated on 30/Dec/22

how can you say that it has no real  root?    f(−∞)=+∞  f(+∞)=+∞  f(0)=−128 <0  ⇒it has at least two real roots!  one is positive, one is negative.

$${how}\:{can}\:{you}\:{say}\:{that}\:{it}\:{has}\:{no}\:{real} \\ $$$${root}? \\ $$$$ \\ $$$${f}\left(−\infty\right)=+\infty \\ $$$${f}\left(+\infty\right)=+\infty \\ $$$${f}\left(\mathrm{0}\right)=−\mathrm{128}\:<\mathrm{0} \\ $$$$\Rightarrow{it}\:{has}\:{at}\:{least}\:{two}\:{real}\:{roots}! \\ $$$${one}\:{is}\:{positive},\:{one}\:{is}\:{negative}. \\ $$

Commented by Michaelfaraday last updated on 30/Dec/22

okay sir but sir show us the real root  that the equation have.

$${okay}\:{sir}\:{but}\:{sir}\:{show}\:{us}\:{the}\:{real}\:{root} \\ $$$${that}\:{the}\:{equation}\:{have}. \\ $$

Commented by MJS_new last updated on 30/Dec/22

x_1 ≈−5.76397627403  x_2 ≈2.26841847295  x_(3, 4) ≈2.24777890054±2.17648395669i

$${x}_{\mathrm{1}} \approx−\mathrm{5}.\mathrm{76397627403} \\ $$$${x}_{\mathrm{2}} \approx\mathrm{2}.\mathrm{26841847295} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} \approx\mathrm{2}.\mathrm{24777890054}\pm\mathrm{2}.\mathrm{17648395669i} \\ $$

Answered by aleks041103 last updated on 29/Dec/22

f(x)=x^4 −x^3 −19x^2 +93x−128  let f(x)=(x^2 +ax+b)(x^2 +cx+d)  ⇒a+c=−1  b+d+ac=−19  ad+bc=93  bd=−128    ⇒b+d−a(1+a)=−19  ad−b(1+a)=93  bd=−128    ⇒b^2 −128−ab(1+a)=−19b  −128a−b^2 (1+a)=93b    ⇒b^2 +19b−128−ab−a^2 b=0  b^2 +ab^2 +93b+128a=0    b^2 +(19−a−a^2 )b−128=0  (1+a)b^2 +93b+128a=0    a=0?  b^2 +19b−128=0  b^2 +93b=0⇒b=0,−93, but bd=−128⇒b≠0  ⇒a≠0    a=−1?  b^2 +19b−128=0  93b−128=0⇒b=128/93  ⇒b^2 −74b=0,b≠0⇒b=74  ⇒a≠−1    ⇒ab^2 +a(19−a−a^2 )b−128a=0  (1+a)b^2 +93b+128a=0  ⇒(1+2a)b^2 +b(93+19a−a^2 −a^3 )=0  ⇒ b=((a^3 +a^2 −19a−93)/(1+2a))  also    b^2 +(19−a−a^2 )b−128=0  (1+a)b^2 +93b+128a=0    (1+a)b^2 +(1+a)(19−a−a^2 )b−128−128a=0  (1+a)b^2 +93b+128a=0  ⇒(19−a−a^2 +19a−a^2 −a^3 −93)b−128(1+2a)=0  (−74+18a−2a^2 −a^3 )b=128(1+2a)  ⇒b=((128(1+2a))/(−74+18a−2a^2 −a^3 ))  ⇒128(1+2a)^2 =(−74+18a−2a^2 −a^3 )(a^3 +a^2 −19a−93)  128+512a+512a^2 =...  ...  ...

$${f}\left({x}\right)={x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{19}{x}^{\mathrm{2}} +\mathrm{93}{x}−\mathrm{128} \\ $$$${let}\:{f}\left({x}\right)=\left({x}^{\mathrm{2}} +{ax}+{b}\right)\left({x}^{\mathrm{2}} +{cx}+{d}\right) \\ $$$$\Rightarrow{a}+{c}=−\mathrm{1} \\ $$$${b}+{d}+{ac}=−\mathrm{19} \\ $$$${ad}+{bc}=\mathrm{93} \\ $$$${bd}=−\mathrm{128} \\ $$$$ \\ $$$$\Rightarrow{b}+{d}−{a}\left(\mathrm{1}+{a}\right)=−\mathrm{19} \\ $$$${ad}−{b}\left(\mathrm{1}+{a}\right)=\mathrm{93} \\ $$$${bd}=−\mathrm{128} \\ $$$$ \\ $$$$\Rightarrow{b}^{\mathrm{2}} −\mathrm{128}−{ab}\left(\mathrm{1}+{a}\right)=−\mathrm{19}{b} \\ $$$$−\mathrm{128}{a}−{b}^{\mathrm{2}} \left(\mathrm{1}+{a}\right)=\mathrm{93}{b} \\ $$$$ \\ $$$$\Rightarrow{b}^{\mathrm{2}} +\mathrm{19}{b}−\mathrm{128}−{ab}−{a}^{\mathrm{2}} {b}=\mathrm{0} \\ $$$${b}^{\mathrm{2}} +{ab}^{\mathrm{2}} +\mathrm{93}{b}+\mathrm{128}{a}=\mathrm{0} \\ $$$$ \\ $$$${b}^{\mathrm{2}} +\left(\mathrm{19}−{a}−{a}^{\mathrm{2}} \right){b}−\mathrm{128}=\mathrm{0} \\ $$$$\left(\mathrm{1}+{a}\right){b}^{\mathrm{2}} +\mathrm{93}{b}+\mathrm{128}{a}=\mathrm{0} \\ $$$$ \\ $$$${a}=\mathrm{0}? \\ $$$${b}^{\mathrm{2}} +\mathrm{19}{b}−\mathrm{128}=\mathrm{0} \\ $$$${b}^{\mathrm{2}} +\mathrm{93}{b}=\mathrm{0}\Rightarrow{b}=\mathrm{0},−\mathrm{93},\:{but}\:{bd}=−\mathrm{128}\Rightarrow{b}\neq\mathrm{0} \\ $$$$\Rightarrow{a}\neq\mathrm{0} \\ $$$$ \\ $$$${a}=−\mathrm{1}? \\ $$$${b}^{\mathrm{2}} +\mathrm{19}{b}−\mathrm{128}=\mathrm{0} \\ $$$$\mathrm{93}{b}−\mathrm{128}=\mathrm{0}\Rightarrow{b}=\mathrm{128}/\mathrm{93} \\ $$$$\Rightarrow{b}^{\mathrm{2}} −\mathrm{74}{b}=\mathrm{0},{b}\neq\mathrm{0}\Rightarrow{b}=\mathrm{74} \\ $$$$\Rightarrow{a}\neq−\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow{ab}^{\mathrm{2}} +{a}\left(\mathrm{19}−{a}−{a}^{\mathrm{2}} \right){b}−\mathrm{128}{a}=\mathrm{0} \\ $$$$\left(\mathrm{1}+{a}\right){b}^{\mathrm{2}} +\mathrm{93}{b}+\mathrm{128}{a}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{1}+\mathrm{2}{a}\right){b}^{\mathrm{2}} +{b}\left(\mathrm{93}+\mathrm{19}{a}−{a}^{\mathrm{2}} −{a}^{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\Rightarrow\:{b}=\frac{{a}^{\mathrm{3}} +{a}^{\mathrm{2}} −\mathrm{19}{a}−\mathrm{93}}{\mathrm{1}+\mathrm{2}{a}} \\ $$$${also} \\ $$$$ \\ $$$${b}^{\mathrm{2}} +\left(\mathrm{19}−{a}−{a}^{\mathrm{2}} \right){b}−\mathrm{128}=\mathrm{0} \\ $$$$\left(\mathrm{1}+{a}\right){b}^{\mathrm{2}} +\mathrm{93}{b}+\mathrm{128}{a}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{1}+{a}\right){b}^{\mathrm{2}} +\left(\mathrm{1}+{a}\right)\left(\mathrm{19}−{a}−{a}^{\mathrm{2}} \right){b}−\mathrm{128}−\mathrm{128}{a}=\mathrm{0} \\ $$$$\left(\mathrm{1}+{a}\right){b}^{\mathrm{2}} +\mathrm{93}{b}+\mathrm{128}{a}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{19}−{a}−{a}^{\mathrm{2}} +\mathrm{19}{a}−{a}^{\mathrm{2}} −{a}^{\mathrm{3}} −\mathrm{93}\right){b}−\mathrm{128}\left(\mathrm{1}+\mathrm{2}{a}\right)=\mathrm{0} \\ $$$$\left(−\mathrm{74}+\mathrm{18}{a}−\mathrm{2}{a}^{\mathrm{2}} −{a}^{\mathrm{3}} \right){b}=\mathrm{128}\left(\mathrm{1}+\mathrm{2}{a}\right) \\ $$$$\Rightarrow{b}=\frac{\mathrm{128}\left(\mathrm{1}+\mathrm{2}{a}\right)}{−\mathrm{74}+\mathrm{18}{a}−\mathrm{2}{a}^{\mathrm{2}} −{a}^{\mathrm{3}} } \\ $$$$\Rightarrow\mathrm{128}\left(\mathrm{1}+\mathrm{2}{a}\right)^{\mathrm{2}} =\left(−\mathrm{74}+\mathrm{18}{a}−\mathrm{2}{a}^{\mathrm{2}} −{a}^{\mathrm{3}} \right)\left({a}^{\mathrm{3}} +{a}^{\mathrm{2}} −\mathrm{19}{a}−\mathrm{93}\right) \\ $$$$\mathrm{128}+\mathrm{512}{a}+\mathrm{512}{a}^{\mathrm{2}} =... \\ $$$$... \\ $$$$... \\ $$$$ \\ $$

Commented by Michaelfaraday last updated on 29/Dec/22

sir i dont understand your step?

$${sir}\:{i}\:{dont}\:{understand}\:{your}\:{step}? \\ $$

Commented by MJS_new last updated on 29/Dec/22

It′s not possible this way.  x^4 +ax^3 +bx^2 +cx+d=0  1. let x=t−(a/4) to get  t^4 +pt^2 +qt+r=0  2. now we might find 2 square factors  (t^2 −αt+β)(t^2 +αt+γ)=0  by matching the constants.  solve 2 of the 3 equations for β and γ, then  insert in the 3^(rd)  equation to get  (α^2 )^3 +A(α^2 )^2 +Bα^2 +C=0  only if this has got “nice” solutions we get  square factors we can work with.

$$\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{this}\:\mathrm{way}. \\ $$$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$$\mathrm{1}.\:\mathrm{let}\:{x}={t}−\frac{{a}}{\mathrm{4}}\:\mathrm{to}\:\mathrm{get} \\ $$$${t}^{\mathrm{4}} +{pt}^{\mathrm{2}} +{qt}+{r}=\mathrm{0} \\ $$$$\mathrm{2}.\:\mathrm{now}\:\mathrm{we}\:\mathrm{might}\:\mathrm{find}\:\mathrm{2}\:\mathrm{square}\:\mathrm{factors} \\ $$$$\left({t}^{\mathrm{2}} −\alpha{t}+\beta\right)\left({t}^{\mathrm{2}} +\alpha{t}+\gamma\right)=\mathrm{0} \\ $$$$\mathrm{by}\:\mathrm{matching}\:\mathrm{the}\:\mathrm{constants}. \\ $$$$\mathrm{solve}\:\mathrm{2}\:\mathrm{of}\:\mathrm{the}\:\mathrm{3}\:\mathrm{equations}\:\mathrm{for}\:\beta\:\mathrm{and}\:\gamma,\:\mathrm{then} \\ $$$$\mathrm{insert}\:\mathrm{in}\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{equation}\:\mathrm{to}\:\mathrm{get} \\ $$$$\left(\alpha^{\mathrm{2}} \right)^{\mathrm{3}} +{A}\left(\alpha^{\mathrm{2}} \right)^{\mathrm{2}} +{B}\alpha^{\mathrm{2}} +{C}=\mathrm{0} \\ $$$$\mathrm{only}\:\mathrm{if}\:\mathrm{this}\:\mathrm{has}\:\mathrm{got}\:``\mathrm{nice}''\:\mathrm{solutions}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{square}\:\mathrm{factors}\:\mathrm{we}\:\mathrm{can}\:\mathrm{work}\:\mathrm{with}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com