Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1838 by 112358 last updated on 11/Oct/15

Show that  (1) (1/(sinz))=(1/z)+Σ_(n=1) ^∞ (−1)^n ((1/(z+nπ))+(1/(z−nπ)))  (2) cotz=(1/z)+Σ_(n=1) ^∞ ((1/(z+nπ))+(1/(z−nπ)))  where z≠mπ, m∈Z , given the fact that  cosax=((2sinaπ)/π)[(1/(2a))+Σ_(n=1) ^∞ ((((−1)^n acosnx)/(a^2 −n^2 )))]  where a∉Z, −π≤x≤π.

$${Show}\:{that} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{{sinz}}=\frac{\mathrm{1}}{{z}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{{z}+{n}\pi}+\frac{\mathrm{1}}{{z}−{n}\pi}\right) \\ $$$$\left(\mathrm{2}\right)\:{cotz}=\frac{\mathrm{1}}{{z}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{z}+{n}\pi}+\frac{\mathrm{1}}{{z}−{n}\pi}\right) \\ $$$${where}\:{z}\neq{m}\pi,\:{m}\in\mathbb{Z}\:,\:{given}\:{the}\:{fact}\:{that} \\ $$$${cosax}=\frac{\mathrm{2}{sina}\pi}{\pi}\left[\frac{\mathrm{1}}{\mathrm{2}{a}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} {acosnx}}{{a}^{\mathrm{2}} −{n}^{\mathrm{2}} }\right)\right] \\ $$$${where}\:{a}\notin\mathbb{Z},\:−\pi\leqslant{x}\leqslant\pi.\: \\ $$

Answered by 112358 last updated on 14/Oct/15

We are given that  cosax=((2sinaπ)/π)[(1/(2a))+Σ_(n=1) ^∞ ((((−1)^n acosnx)/(a^2 −n^2 )))]  where a∉Z and x∈[−π,π].   (1) Let x=0. The equation then  becomes   cos(0)=((2sinaπ)/π)[(1/(2a))+Σ_(n=1) ^∞ ((((−1)^n acos(0))/(a^2 −n^2 )))]  1=((2sinaπ)/π)[(1/(2a))+Σ_(n=1) ^∞ ((((−1)^n a)/(a^2 −n^2 )))]  z is not an integer multiple of π  and a is not an integer so that  we can write z=aπ since aπ appears  under the sine function. ∴ a=(z/π).  ⇒1=((2sinz)/π)[(π/(2z))+Σ_(n=1) ^∞ ((((−1)^n (z/π))/((z^2 /π^2 )−n^2 )))]  ⇒(1/(sinz))=(2/π)[(π/(2z))+Σ_(n=1) ^∞ ((((−1)^n πz)/((z−πn)(z+πn))))]  (1/(sinz))=(1/z)+Σ_(n=1) ^∞ ((((−1)^n 2z)/((z−πn)(z+πn))))  (1/(sinz))=(1/z)+Σ_(n=1) ^∞ (−1)^n (((z−πn+z+πn)/((z−πn)(z+πn))))  (1/(sinz))=(1/z)+Σ_(n=1) ^∞ (−1)^n ((1/(z+nπ))+(1/(z−nπ)))    (2) If we let x=π and z=aπ we can obtain  the second equation since  (−1)^n cosnπ=(−1)^n (−1)^n =(−1)^(2n) =1.

$${We}\:{are}\:{given}\:{that} \\ $$$${cosax}=\frac{\mathrm{2}{sina}\pi}{\pi}\left[\frac{\mathrm{1}}{\mathrm{2}{a}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} {acosnx}}{{a}^{\mathrm{2}} −{n}^{\mathrm{2}} }\right)\right] \\ $$$${where}\:{a}\notin\mathbb{Z}\:{and}\:{x}\in\left[−\pi,\pi\right].\: \\ $$$$\left(\mathrm{1}\right)\:{Let}\:{x}=\mathrm{0}.\:{The}\:{equation}\:{then} \\ $$$${becomes}\: \\ $$$${cos}\left(\mathrm{0}\right)=\frac{\mathrm{2}{sina}\pi}{\pi}\left[\frac{\mathrm{1}}{\mathrm{2}{a}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} {acos}\left(\mathrm{0}\right)}{{a}^{\mathrm{2}} −{n}^{\mathrm{2}} }\right)\right] \\ $$$$\mathrm{1}=\frac{\mathrm{2}{sina}\pi}{\pi}\left[\frac{\mathrm{1}}{\mathrm{2}{a}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} {a}}{{a}^{\mathrm{2}} −{n}^{\mathrm{2}} }\right)\right] \\ $$$${z}\:{is}\:{not}\:{an}\:{integer}\:{multiple}\:{of}\:\pi \\ $$$${and}\:{a}\:{is}\:{not}\:{an}\:{integer}\:{so}\:{that} \\ $$$${we}\:{can}\:{write}\:{z}={a}\pi\:{since}\:{a}\pi\:{appears} \\ $$$${under}\:{the}\:{sine}\:{function}.\:\therefore\:{a}=\frac{{z}}{\pi}. \\ $$$$\Rightarrow\mathrm{1}=\frac{\mathrm{2}{sinz}}{\pi}\left[\frac{\pi}{\mathrm{2}{z}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} \frac{{z}}{\pi}}{\frac{{z}^{\mathrm{2}} }{\pi^{\mathrm{2}} }−{n}^{\mathrm{2}} }\right)\right] \\ $$$$\Rightarrow\frac{\mathrm{1}}{{sinz}}=\frac{\mathrm{2}}{\pi}\left[\frac{\pi}{\mathrm{2}{z}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} \pi{z}}{\left({z}−\pi{n}\right)\left({z}+\pi{n}\right)}\right)\right] \\ $$$$\frac{\mathrm{1}}{{sinz}}=\frac{\mathrm{1}}{{z}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} \mathrm{2}{z}}{\left({z}−\pi{n}\right)\left({z}+\pi{n}\right)}\right) \\ $$$$\frac{\mathrm{1}}{{sinz}}=\frac{\mathrm{1}}{{z}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left(\frac{{z}−\pi{n}+{z}+\pi{n}}{\left({z}−\pi{n}\right)\left({z}+\pi{n}\right)}\right) \\ $$$$\frac{\mathrm{1}}{{sinz}}=\frac{\mathrm{1}}{{z}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{{z}+{n}\pi}+\frac{\mathrm{1}}{{z}−{n}\pi}\right) \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{If}\:{we}\:{let}\:{x}=\pi\:{and}\:{z}={a}\pi\:{we}\:{can}\:{obtain} \\ $$$${the}\:{second}\:{equation}\:{since} \\ $$$$\left(−\mathrm{1}\right)^{{n}} {cosn}\pi=\left(−\mathrm{1}\right)^{{n}} \left(−\mathrm{1}\right)^{{n}} =\left(−\mathrm{1}\right)^{\mathrm{2}{n}} =\mathrm{1}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com