All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 183927 by greougoury555 last updated on 31/Dec/22
limx→2tan(2πx)+cos(π2x)+tan(π8x)x2+4x−12=?
Answered by cortano1 last updated on 31/Dec/22
limx→2tan(2πx)+cos(π2x)+tan(π8x)(x−2)(x+6)=limx→2tan(2πx)+cos(π2x)+tan(π8x)8(x−2)[x−2=m]=limm→0tan(2π(m+2))+cos(π2(m+2))+tan(π8(m+2))8m=limm→0tan(2πm)−cos(π2m)+tan(π8m+π4)8m=π4+limm→01−cos(π2m)8m+limm→0tan(π8m+π4)−tanπ48m=π4+limm→0sin2(π2m)16m+limm→0tan(π8m)[1+tan(π8m+π4)]8m=π4+0+2.π64=9π32
Answered by qaz last updated on 31/Dec/22
limx→2tan(2πx)+cos(π2x)+tan(π8x)x2+4x−12=limx→22πsec2(2πx)−π2sin(π2x)+π8sec2(π8x)2x+4=2π−0+π8⋅28=932π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com