Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 183927 by greougoury555 last updated on 31/Dec/22

 lim_(x→2 )  ((tan (2πx)+cos ((π/2)x)+tan ((π/8)x))/(x^2 +4x−12)) =?

limx2tan(2πx)+cos(π2x)+tan(π8x)x2+4x12=?

Answered by cortano1 last updated on 31/Dec/22

 lim_(x→2)  ((tan (2πx)+cos ((π/2)x)+tan ((π/8)x))/((x−2)(x+6)))  = lim_(x→2)  ((tan (2πx)+cos ((π/2)x)+tan ((π/8)x))/(8(x−2)))  [ x−2=m ]  = lim_(m→0)  ((tan (2π(m+2))+cos ((π/2)(m+2))+tan ((π/8)(m+2)))/(8m))  =lim_(m→0)  ((tan (2πm)−cos ((π/2)m)+tan ((π/8)m+(π/4)))/(8m))  =(π/4)+lim_(m→0) ((1−cos ((π/2)m))/(8m)) +lim_(m→0) ((tan ((π/8)m+(π/4))−tan (π/4))/(8m))  =(π/4)+lim_(m→0)  ((sin^2 ((π/2)m))/(16m)) +lim_(m→0)  ((tan ((π/8)m)[ 1+tan ((π/8)m+(π/4))])/(8m))  =(π/4)+0+((2.π)/(64)) = ((9π)/(32))

limx2tan(2πx)+cos(π2x)+tan(π8x)(x2)(x+6)=limx2tan(2πx)+cos(π2x)+tan(π8x)8(x2)[x2=m]=limm0tan(2π(m+2))+cos(π2(m+2))+tan(π8(m+2))8m=limm0tan(2πm)cos(π2m)+tan(π8m+π4)8m=π4+limm01cos(π2m)8m+limm0tan(π8m+π4)tanπ48m=π4+limm0sin2(π2m)16m+limm0tan(π8m)[1+tan(π8m+π4)]8m=π4+0+2.π64=9π32

Answered by qaz last updated on 31/Dec/22

lim_(x→2) ((tan (2πx)+cos ((π/2)x)+tan ((π/8)x))/(x^2 +4x−12))  =lim_(x→2) ((2πsec^2 (2πx)−(π/2)sin ((π/2)x)+(π/8)sec^2 ((π/8)x))/(2x+4))  =((2π−0+(π/8)∙2)/8)=(9/(32))π

limx2tan(2πx)+cos(π2x)+tan(π8x)x2+4x12=limx22πsec2(2πx)π2sin(π2x)+π8sec2(π8x)2x+4=2π0+π828=932π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com