Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 184093 by Ib last updated on 02/Jan/23

Answered by manxsol last updated on 03/Jan/23

(1+(t/(100)))^(10) =3  (1+(1/((((100)/t)))))^(10) =3  (1+(1/((((100)/t)))))^(10×((10)/t)) =3^((10)/t)   c=3^((10)/t)   1ne=ln(3^((10)/t) )  1=((10)/t)ln3  t=10ln3  t=10.99  theory _ & calculate  lim_(x→∞) (1+(1/x))^x =e  e  2.718282  ln3  1.098612  t=10.99  (1+((10.99)/(100)))^(10)   2.836864  no exacto  otro metodo  10ln(1+t)=ln3  1+t=(e^(ln3) )^(1/(10))   t=(e^(ln3) )^(1/(10)) −1  t=3^(1/(10)) −1  t=0.116123=(x/(100))  x=11.61  (1+((11.61)/(100)))^(10)   2.999377  ok  x=11.61   es la solucion

$$\left(\mathrm{1}+\frac{{t}}{\mathrm{100}}\right)^{\mathrm{10}} =\mathrm{3} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\left(\frac{\mathrm{100}}{{t}}\right)}\right)^{\mathrm{10}} =\mathrm{3} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\left(\frac{\mathrm{100}}{{t}}\right)}\right)^{\mathrm{10}×\frac{\mathrm{10}}{{t}}} =\mathrm{3}^{\frac{\mathrm{10}}{{t}}} \\ $$$${c}=\mathrm{3}^{\frac{\mathrm{10}}{{t}}} \\ $$$$\mathrm{1}{ne}=\mathrm{ln}\left(\mathrm{3}^{\frac{\mathrm{10}}{\mathrm{t}}} \right) \\ $$$$\mathrm{1}=\frac{\mathrm{10}}{\mathrm{t}}\mathrm{ln3} \\ $$$${t}=\mathrm{10}{ln}\mathrm{3} \\ $$$$\mathrm{t}=\mathrm{10}.\mathrm{99} \\ $$$$\mathrm{theory}\:_{} \&\:{calculate} \\ $$$${lim}_{{x}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} =\mathrm{e} \\ $$$$\mathrm{e} \\ $$$$\mathrm{2}.\mathrm{718282} \\ $$$$\mathrm{ln3} \\ $$$$\mathrm{1}.\mathrm{098612} \\ $$$$\mathrm{t}=\mathrm{10}.\mathrm{99} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{10}.\mathrm{99}}{\mathrm{100}}\right)^{\mathrm{10}} \\ $$$$\mathrm{2}.\mathrm{836864}\:\:{no}\:{exacto} \\ $$$${otro}\:{metodo} \\ $$$$\mathrm{10}{ln}\left(\mathrm{1}+{t}\right)={ln}\mathrm{3} \\ $$$$\mathrm{1}+{t}=\left({e}^{{ln}\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{10}}} \\ $$$${t}=\left({e}^{{ln}\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{10}}} −\mathrm{1} \\ $$$${t}=\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{10}}} −\mathrm{1} \\ $$$${t}=\mathrm{0}.\mathrm{116123}=\frac{{x}}{\mathrm{100}} \\ $$$${x}=\mathrm{11}.\mathrm{61} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{11}.\mathrm{61}}{\mathrm{100}}\right)^{\mathrm{10}} \\ $$$$\mathrm{2}.\mathrm{999377}\:\:{ok}\:\:{x}=\mathrm{11}.\mathrm{61} \\ $$$$\:{es}\:{la}\:{solucion} \\ $$$$ \\ $$

Commented by Frix last updated on 03/Jan/23

We don′t need all this. The exact value is  (1+(t/(100)))^(10) =3 ⇔ 1+(t/(100))=±(3)^(1/(10))  ⇔ t=100(±(3)^(1/(10)) −1)

$$\mathrm{We}\:\mathrm{don}'\mathrm{t}\:\mathrm{need}\:\mathrm{all}\:\mathrm{this}.\:\mathrm{The}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{is} \\ $$$$\left(\mathrm{1}+\frac{{t}}{\mathrm{100}}\right)^{\mathrm{10}} =\mathrm{3}\:\Leftrightarrow\:\mathrm{1}+\frac{{t}}{\mathrm{100}}=\pm\sqrt[{\mathrm{10}}]{\mathrm{3}}\:\Leftrightarrow\:{t}=\mathrm{100}\left(\pm\sqrt[{\mathrm{10}}]{\mathrm{3}}−\mathrm{1}\right) \\ $$

Commented by manolex last updated on 03/Jan/23

true,is exact

$${true},{is}\:{exact} \\ $$

Commented by manolex last updated on 03/Jan/23

t_1 =11.61     t_2 =−211.61

$${t}_{\mathrm{1}} =\mathrm{11}.\mathrm{61}\:\:\:\:\:{t}_{\mathrm{2}} =−\mathrm{211}.\mathrm{61} \\ $$

Answered by manxsol last updated on 02/Jan/23

(√((((35)/2))^2 +(−6)^3 ))  (√(((1225)/4)−216))  (√((1225−864)/4))  (√((361)/4)) =((19)/2)  ^3 (√(−((35)/2)−((19)/2))) +^3 (√(((−35)/2)+((19)/2)))  ^3 (√(−27))+^3 (√(−8))  −5 is solution

$$\sqrt{\left(\frac{\mathrm{35}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(−\mathrm{6}\right)^{\mathrm{3}} } \\ $$$$\sqrt{\frac{\mathrm{1225}}{\mathrm{4}}−\mathrm{216}} \\ $$$$\sqrt{\frac{\mathrm{1225}−\mathrm{864}}{\mathrm{4}}} \\ $$$$\sqrt{\frac{\mathrm{361}}{\mathrm{4}}}\:=\frac{\mathrm{19}}{\mathrm{2}} \\ $$$$\:^{\mathrm{3}} \sqrt{−\frac{\mathrm{35}}{\mathrm{2}}−\frac{\mathrm{19}}{\mathrm{2}}}\:+\:^{\mathrm{3}} \sqrt{\frac{−\mathrm{35}}{\mathrm{2}}+\frac{\mathrm{19}}{\mathrm{2}}} \\ $$$$\:^{\mathrm{3}} \sqrt{−\mathrm{27}}+\:^{\mathrm{3}} \sqrt{−\mathrm{8}} \\ $$$$−\mathrm{5}\:{is}\:{solution} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com