Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 184135 by ajfour last updated on 03/Jan/23

Commented by mr W last updated on 03/Jan/23

PQ_(min) =b(√((1/2)(1+(a/( (√(a^2 +b^2 )))))))

$${PQ}_{{min}} ={b}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)} \\ $$

Answered by ajfour last updated on 03/Jan/23

Commented by ajfour last updated on 03/Jan/23

tan 2θ=(b/a)  PQ^2 =l^2 =t^2 +(b−r)^2         =(r^2 /(tan^2 θ))+(b−r)^2 =(r^2 /m^2 )+(b−r)^2      ((d(l^2 ))/dr)=0  ⇒  b=r(1+(1/m^2 ))  l^2 =r^2 ((1/m^2 )+(1/m^4 ))  l=(b/( (√(m^2 +1))))  tan 2θ=(b/a)=((2m)/(1−m^2 ))  ⇒   m^2 −1+((2am)/b)=0  m=−(a/b)+(√((a^2 /b^2 )+1))  m^2 +1=2−((2am)/b)               =2+((2a^2 )/b^2 )−((2a)/b)(√((a^2 /b^2 )+1))              =2{((a^2 +b^2 )/b^2 )−(a/b)(√((a^2 +b^2 )/b^2 ))}  l^2 =((b^4 /2)/( (√(a^2 +b^2 ))((√(a^2 +b^2 ))−a)))      =(((b^2 /2)(a+(√(a^2 +b^2 ))))/( (√(a^2 +b^2 ))))     ⇒  l=(b/( (√2)))(√(1+(a/( (√(a^2 +b^2 ))))))

$$\mathrm{tan}\:\mathrm{2}\theta=\frac{{b}}{{a}} \\ $$$${PQ}^{\mathrm{2}} ={l}^{\mathrm{2}} ={t}^{\mathrm{2}} +\left({b}−{r}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\frac{{r}^{\mathrm{2}} }{\mathrm{tan}\:^{\mathrm{2}} \theta}+\left({b}−{r}\right)^{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{{m}^{\mathrm{2}} }+\left({b}−{r}\right)^{\mathrm{2}} \\ $$$$\:\:\:\frac{{d}\left({l}^{\mathrm{2}} \right)}{{dr}}=\mathrm{0}\:\:\Rightarrow\:\:{b}={r}\left(\mathrm{1}+\frac{\mathrm{1}}{{m}^{\mathrm{2}} }\right) \\ $$$${l}^{\mathrm{2}} ={r}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{m}^{\mathrm{2}} }+\frac{\mathrm{1}}{{m}^{\mathrm{4}} }\right) \\ $$$${l}=\frac{{b}}{\:\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{tan}\:\mathrm{2}\theta=\frac{{b}}{{a}}=\frac{\mathrm{2}{m}}{\mathrm{1}−{m}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:{m}^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{2}{am}}{{b}}=\mathrm{0} \\ $$$${m}=−\frac{{a}}{{b}}+\sqrt{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\mathrm{1}} \\ $$$${m}^{\mathrm{2}} +\mathrm{1}=\mathrm{2}−\frac{\mathrm{2}{am}}{{b}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}+\frac{\mathrm{2}{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\frac{\mathrm{2}{a}}{{b}}\sqrt{\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left\{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\frac{{a}}{{b}}\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}\right\} \\ $$$${l}^{\mathrm{2}} =\frac{{b}^{\mathrm{4}} /\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−{a}\right)} \\ $$$$\:\:\:\:=\frac{\left({b}^{\mathrm{2}} /\mathrm{2}\right)\left({a}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\:\:\:\Rightarrow\:\:{l}=\frac{{b}}{\:\sqrt{\mathrm{2}}}\sqrt{\mathrm{1}+\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}} \\ $$$$ \\ $$

Commented by ajfour last updated on 03/Jan/23

yes sir, thanks.

$${yes}\:{sir},\:{thanks}. \\ $$

Commented by mr W last updated on 03/Jan/23

very nice question and solution!

$${very}\:{nice}\:{question}\:{and}\:{solution}! \\ $$

Answered by mr W last updated on 03/Jan/23

Commented by mr W last updated on 04/Jan/23

an other approach  locus of Q is bisector of angle ∠NAB.  the minimum of PQ is the distance  from P to this bisector: PQ′.  θ=(β/2)  cos β=(a/( (√(a^2 +b^2 ))))  ⇒cos (β/2)=(√((1/2)(cos β+1))) =(√((1/2)(1+(a/( (√(a^2 +b^2 )))))))  ⇒PQ′=b cos θ=b cos (β/2)               =b(√((1/2)(1+(a/( (√(a^2 +b^2 )))))))=PQ_(min)

$$\boldsymbol{{an}}\:\boldsymbol{{other}}\:\boldsymbol{{approach}} \\ $$$${locus}\:{of}\:{Q}\:{is}\:{bisector}\:{of}\:{angle}\:\angle{NAB}. \\ $$$${the}\:{minimum}\:{of}\:{PQ}\:{is}\:{the}\:{distance} \\ $$$${from}\:{P}\:{to}\:{this}\:{bisector}:\:{PQ}'. \\ $$$$\theta=\frac{\beta}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\beta=\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\Rightarrow\mathrm{cos}\:\frac{\beta}{\mathrm{2}}=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\beta+\mathrm{1}\right)}\:=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)} \\ $$$$\Rightarrow{PQ}'={b}\:\mathrm{cos}\:\theta={b}\:\mathrm{cos}\:\frac{\beta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:={b}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{{a}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right)}={PQ}_{{min}} \\ $$

Commented by ajfour last updated on 04/Jan/23

this is best approach, thanks sir.

$${this}\:{is}\:{best}\:{approach},\:{thanks}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com