Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 184144 by paul2222 last updated on 03/Jan/23

𝚺_(n=1) ^∞ 𝚺_(m=1) ^∞ (((βˆ’1)^(n+m) )/(nm(n+m)))

βˆ‘βˆžn=1βˆ‘βˆžm=1(βˆ’1)n+mnm(n+m)

Answered by SEKRET last updated on 04/Jan/23

  Ξ£_(n=1) ^∞ (1/n)βˆ™Ξ£_(m=1) ^∞ (((βˆ’1)^(n+m) )/(mβˆ™(n+m)))     f(x)_(x=βˆ’1)   = Ξ£_(m=1) ^∞ (x^(n+m) /(mβˆ™(n+m)))     f β€² (x) = Ξ£_(m=1) ^∞  (x^(n+mβˆ’1) /m)=x^(nβˆ’1) βˆ™Ξ£_(m=1) ^∞ (x^m /m)       f β€² (x) = x^(nβˆ’1)  βˆ™ ln((1/(1βˆ’x)))      C=0     Ξ£_(n=1) ^∞  (((βˆ’1)/n)βˆ™(∫x^(nβˆ’1) βˆ™ln(1βˆ’x) dx))_(x=βˆ’1) ^(   C=0)       Ξ£_(n=1) ^∞  (βˆ’ ((x^n βˆ™ln(1βˆ’x) +B_x (n+1,0))/n^2 ) )      Ξ£_(n=1) ^∞  (((βˆ’(βˆ’1)^n βˆ™ln(2))/n^2 ) βˆ’ ((B_(βˆ’1) (n+1 ; 0))/n^2 ))=    =βˆ’1βˆ™ln(2)βˆ™Ξ£_(n=1) ^∞ (((βˆ’1)^n )/n^2 ) + Ξ£_(n=1) ^∞ ((βˆ’B_(βˆ’1) (n+1,0))/n^2 )=  = ((𝛑^2 βˆ™ln(2))/(12)) + (Ξ£_(n=1) ^∞ (((βˆ’1)^(n+1) 𝚿^0 ((n/2)+(1/2)))/(2n^2 )) +Ξ£_(n=0) ^∞ ((βˆ’πšΏ^0 ((n/2)+1))/(2n^2 )))  = ((𝛑^2 βˆ™ln(2))/(12)) +( βˆ’0.28159 βˆ’0.337683)    β‰ˆ 0.0491823  ABDULAZIZ  ABDUVALIYEV

βˆ‘βˆžn=11nβ‹…βˆ‘βˆžm=1(βˆ’1)n+mmβ‹…(n+m)f(x)x=βˆ’1=βˆ‘βˆžm=1xn+mmβ‹…(n+m)fβ€²(x)=βˆ‘βˆžm=1xn+mβˆ’1m=xnβˆ’1β‹…βˆ‘βˆžm=1xmmfβ€²(x)=xnβˆ’1β‹…ln(11βˆ’x)C=0βˆ‘βˆžn=1(βˆ’1nβ‹…(∫xnβˆ’1β‹…ln(1βˆ’x)dx))x=βˆ’1C=0βˆ‘βˆžn=1(βˆ’xnβ‹…ln(1βˆ’x)+Bx(n+1,0)n2)βˆ‘βˆžn=1(βˆ’(βˆ’1)nβ‹…ln(2)n2βˆ’Bβˆ’1(n+1;0)n2)==βˆ’1β‹…ln(2)β‹…βˆ‘βˆžn=1(βˆ’1)nn2+βˆ‘βˆžn=1βˆ’Bβˆ’1(n+1,0)n2==Ο€2β‹…ln(2)12+(βˆ‘βˆžn=1(βˆ’1)n+1Ξ¨0(n2+12)2n2+βˆ‘βˆžn=0βˆ’Ξ¨0(n2+1)2n2)=Ο€2β‹…ln(2)12+(βˆ’0.28159βˆ’0.337683)β‰ˆ0.0491823ABDULAZIZABDUVALIYEV

Commented by paul2222 last updated on 11/Jan/23

Answered by witcher3 last updated on 05/Jan/23

∫_0 ^1 ((ln^2 (1+x))/x)dx=βˆ’li_2 (βˆ’x)ln(1+x)+∫_0 ^1 ((li_2 (βˆ’x))/(1+x))dx....(E)  Li_2 (βˆ’x)=ΞΆ(2)βˆ’ln(1+x)ln(βˆ’x)βˆ’li_2 (1+x)  =li_2 (βˆ’x)ln(1+x)βˆ’Li_3 (1+x)+ΞΆ(2)ln(1+x)  βˆ’βˆ«_0 ^1 ((ln(1+x))/(1+x))ln(βˆ’x)  =βˆ’(1/2)ln^2 (1+x)ln(βˆ’x)+(1/2)∫((ln^2 (1+x))/x)dx  =βˆ’2li_2 (βˆ’x)ln(1+x)βˆ’2Li_3 (1+x)+2ΞΆ(2)ln(1+x)βˆ’ln^2 (1+x)ln(βˆ’x)  li_2 (βˆ’x)=ΞΆ(2)βˆ’ln(βˆ’x)ln(1+x)βˆ’li_2 (1+x)  ∫((ln^2 (1+x))/x)dx=βˆ’2li_3 (1+x)+2li_2 (1+x)ln(1+x)+ln^2 (1+x)ln(βˆ’x)+c  Let f(x)=Ξ£_(nβ‰₯1) Ξ£_(mβ‰₯1) (((βˆ’1)^(n+m) x^(n+m) )/(nm(n+m))),βˆ€x∈[βˆ’1,1]  fβ€²(x)=ΣΣ(((βˆ’1)^(n+m) )/(nm))x^(n+mβˆ’1) =(1/x)ΣΣ(((βˆ’x)^n (βˆ’x)^m )/(n.m))  =(1/x){Ξ£(((βˆ’x)^n )/n)}{Ξ£(((βˆ’x)^m )/m)}  Ξ£_(nβ‰₯1) (((βˆ’1)^(nβˆ’1) x^n )/n)=ln(1+x)  f^β€² (x)=((ln^(2() (1+x))/x)  f(x)=∫((ln^2 (1+x))/x)dx...(E) apply   f(x)=βˆ’2Li_3 (1+x)+2Li_2 (1+x)ln(1+x)+ln(βˆ’x)ln^2 (1+x)+c  f(0)=0  lim_(xβ†’0) {βˆ’2Li_3 (1+x)+2Li_2 (1+x)ln(1+x)+ln(βˆ’x)ln^2 (1+x)+c}=0  ⇔cβˆ’2ΞΆ(3)=0  c=2ΞΆ(3)    f(x)=βˆ’2Li_3 (1+x)+2Li_2 (1+x)ln(1+x)+ln(βˆ’x)ln^2 (1+x)+2ΞΆ(3)  our Sum=f(1)

∫01ln2(1+x)xdx=βˆ’li2(βˆ’x)ln(1+x)+∫01li2(βˆ’x)1+xdx....(E)Li2(βˆ’x)=ΞΆ(2)βˆ’ln(1+x)ln(βˆ’x)βˆ’li2(1+x)=li2(βˆ’x)ln(1+x)βˆ’Li3(1+x)+ΞΆ(2)ln(1+x)βˆ’βˆ«01ln(1+x)1+xln(βˆ’x)=βˆ’12ln2(1+x)ln(βˆ’x)+12∫ln2(1+x)xdx=βˆ’2li2(βˆ’x)ln(1+x)βˆ’2Li3(1+x)+2ΞΆ(2)ln(1+x)βˆ’ln2(1+x)ln(βˆ’x)li2(βˆ’x)=ΞΆ(2)βˆ’ln(βˆ’x)ln(1+x)βˆ’li2(1+x)∫ln2(1+x)xdx=βˆ’2li3(1+x)+2li2(1+x)ln(1+x)+ln2(1+x)ln(βˆ’x)+cLetf(x)=βˆ‘nβ©Ύ1βˆ‘mβ©Ύ1(βˆ’1)n+mxn+mnm(n+m),βˆ€x∈[βˆ’1,1]fβ€²(x)=ΣΣ(βˆ’1)n+mnmxn+mβˆ’1=1xΣΣ(βˆ’x)n(βˆ’x)mn.m=1x{Ξ£(βˆ’x)nn}{Ξ£(βˆ’x)mm}βˆ‘nβ©Ύ1(βˆ’1)nβˆ’1xnn=ln(1+x)fβ€²(x)=ln2((1+x)xf(x)=∫ln2(1+x)xdx...(E)applyf(x)=βˆ’2Li3(1+x)+2Li2(1+x)ln(1+x)+ln(βˆ’x)ln2(1+x)+cf(0)=0limxβ†’0{βˆ’2Li3(1+x)+2Li2(1+x)ln(1+x)+ln(βˆ’x)ln2(1+x)+c}=0⇔cβˆ’2ΞΆ(3)=0c=2ΞΆ(3)f(x)=βˆ’2Li3(1+x)+2Li2(1+x)ln(1+x)+ln(βˆ’x)ln2(1+x)+2ΞΆ(3)ourSum=f(1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com