All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 184144 by paul2222 last updated on 03/Jan/23
ββn=1ββm=1(β1)n+mnm(n+m)
Answered by SEKRET last updated on 04/Jan/23
ββn=11nβ ββm=1(β1)n+mmβ (n+m)f(x)x=β1=ββm=1xn+mmβ (n+m)fβ²(x)=ββm=1xn+mβ1m=xnβ1β ββm=1xmmfβ²(x)=xnβ1β ln(11βx)C=0ββn=1(β1nβ (β«xnβ1β ln(1βx)dx))x=β1C=0ββn=1(βxnβ ln(1βx)+Bx(n+1,0)n2)ββn=1(β(β1)nβ ln(2)n2βBβ1(n+1;0)n2)==β1β ln(2)β ββn=1(β1)nn2+ββn=1βBβ1(n+1,0)n2==Ο2β ln(2)12+(ββn=1(β1)n+1Ξ¨0(n2+12)2n2+ββn=0βΞ¨0(n2+1)2n2)=Ο2β ln(2)12+(β0.28159β0.337683)β0.0491823ABDULAZIZABDUVALIYEV
Commented by paul2222 last updated on 11/Jan/23
Answered by witcher3 last updated on 05/Jan/23
β«01ln2(1+x)xdx=βli2(βx)ln(1+x)+β«01li2(βx)1+xdx....(E)Li2(βx)=ΞΆ(2)βln(1+x)ln(βx)βli2(1+x)=li2(βx)ln(1+x)βLi3(1+x)+ΞΆ(2)ln(1+x)ββ«01ln(1+x)1+xln(βx)=β12ln2(1+x)ln(βx)+12β«ln2(1+x)xdx=β2li2(βx)ln(1+x)β2Li3(1+x)+2ΞΆ(2)ln(1+x)βln2(1+x)ln(βx)li2(βx)=ΞΆ(2)βln(βx)ln(1+x)βli2(1+x)β«ln2(1+x)xdx=β2li3(1+x)+2li2(1+x)ln(1+x)+ln2(1+x)ln(βx)+cLetf(x)=βnβ©Ύ1βmβ©Ύ1(β1)n+mxn+mnm(n+m),βxβ[β1,1]fβ²(x)=ΣΣ(β1)n+mnmxn+mβ1=1xΣΣ(βx)n(βx)mn.m=1x{Ξ£(βx)nn}{Ξ£(βx)mm}βnβ©Ύ1(β1)nβ1xnn=ln(1+x)fβ²(x)=ln2((1+x)xf(x)=β«ln2(1+x)xdx...(E)applyf(x)=β2Li3(1+x)+2Li2(1+x)ln(1+x)+ln(βx)ln2(1+x)+cf(0)=0limxβ0{β2Li3(1+x)+2Li2(1+x)ln(1+x)+ln(βx)ln2(1+x)+c}=0βcβ2ΞΆ(3)=0c=2ΞΆ(3)f(x)=β2Li3(1+x)+2Li2(1+x)ln(1+x)+ln(βx)ln2(1+x)+2ΞΆ(3)ourSum=f(1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com