Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 184280 by mr W last updated on 04/Jan/23

  Given  { ((a_0 =1)),((a_(n+1) =(1/2)(3a_n +(√(5a_n ^2 −4)) ))) :}   ∀n≥0 , n∈I     find a_n .

$$\:\:{Given}\:\begin{cases}{{a}_{\mathrm{0}} =\mathrm{1}}\\{{a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}{a}_{{n}} +\sqrt{\mathrm{5}{a}_{{n}} ^{\mathrm{2}} −\mathrm{4}}\:\right)}\end{cases} \\ $$$$\:\forall{n}\geqslant\mathrm{0}\:,\:{n}\in{I}\: \\ $$$$\:\:{find}\:{a}_{{n}} . \\ $$

Commented by mr W last updated on 04/Jan/23

unsolved old question

$${unsolved}\:{old}\:{question} \\ $$

Commented by mr W last updated on 04/Jan/23

i found finally a solution:  a_n =(2/( (√5))) cosh [(2n+1) cosh^(−1)  ((√5)/2) ]  which delivers:  a_0 =1  a_1 =2  a_2 =5  a_3 =13  a_4 =34  a_5 =89  ...

$${i}\:{found}\:{finally}\:{a}\:{solution}: \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left[\left(\mathrm{2}{n}+\mathrm{1}\right)\:\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\right] \\ $$$${which}\:{delivers}: \\ $$$${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${a}_{\mathrm{1}} =\mathrm{2} \\ $$$${a}_{\mathrm{2}} =\mathrm{5} \\ $$$${a}_{\mathrm{3}} =\mathrm{13} \\ $$$${a}_{\mathrm{4}} =\mathrm{34} \\ $$$${a}_{\mathrm{5}} =\mathrm{89} \\ $$$$... \\ $$

Commented by mr W last updated on 04/Jan/23

more other solutions?

$${more}\:{other}\:{solutions}? \\ $$

Commented by SEKRET last updated on 04/Jan/23

  a_n = ((a_(n−1)  +a_(n+1) )/3)

$$\:\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\:\frac{\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}−\mathrm{1}} \:+\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\mathrm{3}} \\ $$

Commented by SEKRET last updated on 04/Jan/23

  a_0 =1     a_1 = 2∙1+0     a_2 = 2+(2+1)      a_3 = 5+(5+2+1)   a_4 = 13+(13+5+2+1)    a_5 = 34+ (34+13+5+2+1)  ...........     a_n = a_(n−1) +Σ_(k=0) ^(n−1) a_k

$$\:\:\boldsymbol{\mathrm{a}}_{\mathrm{0}} =\mathrm{1} \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{1}} =\:\mathrm{2}\centerdot\mathrm{1}+\mathrm{0} \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{2}} =\:\mathrm{2}+\left(\mathrm{2}+\mathrm{1}\right) \\ $$$$\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{3}} =\:\mathrm{5}+\left(\mathrm{5}+\mathrm{2}+\mathrm{1}\right) \\ $$$$\:\boldsymbol{\mathrm{a}}_{\mathrm{4}} =\:\mathrm{13}+\left(\mathrm{13}+\mathrm{5}+\mathrm{2}+\mathrm{1}\right) \\ $$$$\:\:\boldsymbol{\mathrm{a}}_{\mathrm{5}} =\:\mathrm{34}+\:\left(\mathrm{34}+\mathrm{13}+\mathrm{5}+\mathrm{2}+\mathrm{1}\right) \\ $$$$........... \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}−\mathrm{1}} +\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}−\mathrm{1}} {\sum}}\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{k}}} \\ $$

Commented by SEKRET last updated on 04/Jan/23

 a_n =(2/( (√5))) cosh((2n+1)cosh^(−1) ((√5)/2))     a_0 =1    a_1 =2    a_3 =13    a_4 =34    a_5 =89   a_6  = 233     a_7 =610     a_8 =1597

$$\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\boldsymbol{\mathrm{cosh}}\left(\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)\boldsymbol{\mathrm{cosh}}^{−\mathrm{1}} \frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{0}} =\mathrm{1}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{1}} =\mathrm{2}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{3}} =\mathrm{13}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{4}} =\mathrm{34}\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{5}} =\mathrm{89} \\ $$$$\:\boldsymbol{\mathrm{a}}_{\mathrm{6}} \:=\:\mathrm{233}\:\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{7}} =\mathrm{610}\:\:\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{8}} =\mathrm{1597}\:\: \\ $$$$\:\:\: \\ $$$$ \\ $$

Commented by SEKRET last updated on 04/Jan/23

  how  did you find it

$$\:\:\boldsymbol{\mathrm{how}}\:\:\boldsymbol{\mathrm{did}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{it}} \\ $$

Commented by mr W last updated on 04/Jan/23

thanks!  but the question asks for a_n  in  explicit form. recursive form is  already given in the question.

$${thanks}! \\ $$$${but}\:{the}\:{question}\:{asks}\:{for}\:{a}_{{n}} \:{in} \\ $$$${explicit}\:{form}.\:{recursive}\:{form}\:{is} \\ $$$${already}\:{given}\:{in}\:{the}\:{question}. \\ $$

Commented by SEKRET last updated on 04/Jan/23

right

$$\boldsymbol{\mathrm{right}} \\ $$

Commented by Frix last updated on 04/Jan/23

It′s each 2nd Fibonacci−Number ⇒  a_n =(1/( (√5)))((((1+(√5))/2))^(2n+1) −(((1−(√5))/2))^(2n+1) )

$$\mathrm{It}'\mathrm{s}\:\mathrm{each}\:\mathrm{2nd}\:\mathrm{Fibonacci}−\mathrm{Number}\:\Rightarrow \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right) \\ $$

Commented by mr W last updated on 04/Jan/23

how did you get this?

$${how}\:{did}\:{you}\:{get}\:{this}? \\ $$

Commented by manxsol last updated on 05/Jan/23

true^� ,   good observation Sr.Frix   determinant ((n,1,2,3,4,5,6,7,8,9,(10)),(f_n ,1,2,3,5,8,(13),(21),(34),(55),(89)),(a_n ,,2,,5,,(13),,(34),,(89)))  a_n =f_(2n−2)    a_1 =1  this solution is valid?    a_n =f_(2n−2)

$${tru}\bar {{e}},\:\:\:{good}\:{observation}\:{Sr}.{Frix} \\ $$$$\begin{array}{|c|c|c|}{{n}}&\hline{\mathrm{1}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}&\hline{\mathrm{4}}&\hline{\mathrm{5}}&\hline{\mathrm{6}}&\hline{\mathrm{7}}&\hline{\mathrm{8}}&\hline{\mathrm{9}}&\hline{\mathrm{10}}\\{{f}_{{n}} }&\hline{\mathrm{1}}&\hline{\mathrm{2}}&\hline{\mathrm{3}}&\hline{\mathrm{5}}&\hline{\mathrm{8}}&\hline{\mathrm{13}}&\hline{\mathrm{21}}&\hline{\mathrm{34}}&\hline{\mathrm{55}}&\hline{\mathrm{89}}\\{{a}_{{n}} }&\hline{}&\hline{\mathrm{2}}&\hline{}&\hline{\mathrm{5}}&\hline{}&\hline{\mathrm{13}}&\hline{}&\hline{\mathrm{34}}&\hline{}&\hline{\mathrm{89}}\\\hline\end{array} \\ $$$${a}_{{n}} ={f}_{\mathrm{2}{n}−\mathrm{2}} \:\:\:{a}_{\mathrm{1}} =\mathrm{1} \\ $$$${this}\:{solution}\:{is}\:{valid}? \\ $$$$\:\:{a}_{{n}} ={f}_{\mathrm{2}{n}−\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 05/Jan/23

so far as it is not deviated from the  given equation a_(n+1) =(1/2)(3a_n +(√(5a_n ^2 −4))),  i don′t think it is mathematically  strict, even though it is correct.  the question is not:  given: 1,2,5,13,34,... find a_n =?.  and even so, there are infinite  solutions for a_n  as we know.

$${so}\:{far}\:{as}\:{it}\:{is}\:{not}\:{deviated}\:{from}\:{the} \\ $$$${given}\:{equation}\:{a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}{a}_{{n}} +\sqrt{\mathrm{5}{a}_{{n}} ^{\mathrm{2}} −\mathrm{4}}\right), \\ $$$${i}\:{don}'{t}\:{think}\:{it}\:{is}\:{mathematically} \\ $$$${strict},\:{even}\:{though}\:{it}\:{is}\:{correct}. \\ $$$${the}\:{question}\:{is}\:{not}: \\ $$$${given}:\:\mathrm{1},\mathrm{2},\mathrm{5},\mathrm{13},\mathrm{34},...\:{find}\:{a}_{{n}} =?. \\ $$$${and}\:{even}\:{so},\:{there}\:{are}\:{infinite} \\ $$$${solutions}\:{for}\:{a}_{{n}} \:{as}\:{we}\:{know}. \\ $$

Answered by mr W last updated on 05/Jan/23

a_(n+1) =(1/2)(3a_n +(√(5a_n ^2 −4)))  2a_(n+1) −3a_n =(√(5a_n ^2 −4))  a_(n+1) ^2 −3a_(n+1) a_n +a_n ^2 +1=0  (a_(n+1) −a_n )^2 +1=a_(n+1) a_n   let   a_(n+1) +a_n =u  a_(n+1) −a_n =v  ⇒u^2 −5v^2 =4  ((u/2))^2 −((((√5)v)/2))^2 =1  cosh^2  x_n −sinh^2  x_n =1  (u/2)=cosh x_n   ⇒u=2 cosh x_n   (((√5)v)/2)=sinh x_n  ⇒v=((2 sinh x_n )/( (√5)))  a_n =(1/2)(u−v)=cosh x_n −((sinh x_n )/( (√5)))  a_n =(2/( (√5)))(((√5)/2) cosh x_n −(1/2) sinh x_n )  a_n =(2/( (√5)))(cosh x_n  cosh α−sinh x_n  sinh α)=kcosh (x_n −α)  a_n =(2/( (√5))) cosh (x_n −α) with α=cosh^(−1)  ((√5)/2)  a_(n+1) =(1/2)(u+v)=cosh x_n +((sinh x_n )/( (√5)))  a_(n+1) =(2/( (√5)))(((√5)/2) cosh x_n +(1/2) sinh x_n )  a_(n+1) =(2/( (√5))) (cosh x_n  cosh α+sinh x_n  sinh α)  a_(n+1) =(2/( (√5))) cosh (x_n +α)  on the other side:  a_(n+1) =(2/( (√5))) cosh (x_(n+1) −α)  ⇒cosh (x_(n+1) −α)=cosh (x_n +α)  ⇒x_(n+1) −α=x_n +α  ⇒x_(n+1) =x_n +2α  ← A.P. with c.d. =2α  ⇒x_n =x_0 +2nα  a_n =(2/( (√5))) cosh (x_0 +2nα−α)  ⇒a_n =(2/( (√5))) cosh [x_0 +(2n−1) cosh^(−1)  ((√5)/2)]  a_0 =(2/( (√5))) cosh (x_0 −cosh^(−1)  ((√5)/2))=1  ⇒x_0 =2 cosh^(−1)  ((√5)/2)  ⇒a_n =(2/( (√5))) cosh [(2n+1)cosh^(−1)  ((√5)/2)]    additionally:  cosh^(−1)  ((√5)/2)=ln (((√5)/2)+(√((((√5)/2))^2 −1)))=ln (((√5)+1)/2)  (2n+1)cosh^(−1)  ((√5)/2)=ln ((((√5)+1)/2))^((2n+1))   e^(−(2n+1)cosh^(−1)  ((√5)/2)) =((((√5)+1)/2))^(−(2n+1)) =((((√5)−1)/2))^((2n+1))   a_n =(2/( (√5))) cosh [(2n+1)cosh^(−1)  ((√5)/2)]  a_n =(1/( (√5)))[e^((2n+1)cosh^(−1)  ((√5)/2)) +e^(−(2n+1)cosh^(−1)  ((√5)/2)) ]  ⇒a_n =(1/( (√5)))[((((√5)+1)/2))^((2n+1)) +((((√5)−1)/2))^((2n+1)) ]

$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}{a}_{{n}} +\sqrt{\mathrm{5}{a}_{{n}} ^{\mathrm{2}} −\mathrm{4}}\right) \\ $$$$\mathrm{2}{a}_{{n}+\mathrm{1}} −\mathrm{3}{a}_{{n}} =\sqrt{\mathrm{5}{a}_{{n}} ^{\mathrm{2}} −\mathrm{4}} \\ $$$${a}_{{n}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{3}{a}_{{n}+\mathrm{1}} {a}_{{n}} +{a}_{{n}} ^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\left({a}_{{n}+\mathrm{1}} −{a}_{{n}} \right)^{\mathrm{2}} +\mathrm{1}={a}_{{n}+\mathrm{1}} {a}_{{n}} \\ $$$${let}\: \\ $$$${a}_{{n}+\mathrm{1}} +{a}_{{n}} ={u} \\ $$$${a}_{{n}+\mathrm{1}} −{a}_{{n}} ={v} \\ $$$$\Rightarrow{u}^{\mathrm{2}} −\mathrm{5}{v}^{\mathrm{2}} =\mathrm{4} \\ $$$$\left(\frac{{u}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{5}}{v}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{cosh}^{\mathrm{2}} \:{x}_{{n}} −\mathrm{sinh}^{\mathrm{2}} \:{x}_{{n}} =\mathrm{1} \\ $$$$\frac{{u}}{\mathrm{2}}=\mathrm{cosh}\:{x}_{{n}} \:\:\Rightarrow{u}=\mathrm{2}\:\mathrm{cosh}\:{x}_{{n}} \\ $$$$\frac{\sqrt{\mathrm{5}}{v}}{\mathrm{2}}=\mathrm{sinh}\:{x}_{{n}} \:\Rightarrow{v}=\frac{\mathrm{2}\:\mathrm{sinh}\:{x}_{{n}} }{\:\sqrt{\mathrm{5}}} \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left({u}−{v}\right)=\mathrm{cosh}\:{x}_{{n}} −\frac{\mathrm{sinh}\:{x}_{{n}} }{\:\sqrt{\mathrm{5}}} \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{cosh}\:{x}_{{n}} −\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sinh}\:{x}_{{n}} \right) \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\left(\mathrm{cosh}\:{x}_{{n}} \:\mathrm{cosh}\:\alpha−\mathrm{sinh}\:{x}_{{n}} \:\mathrm{sinh}\:\alpha\right)={k}\mathrm{cosh}\:\left({x}_{{n}} −\alpha\right) \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left({x}_{{n}} −\alpha\right)\:{with}\:\alpha=\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left({u}+{v}\right)=\mathrm{cosh}\:{x}_{{n}} +\frac{\mathrm{sinh}\:{x}_{{n}} }{\:\sqrt{\mathrm{5}}} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{cosh}\:{x}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sinh}\:{x}_{{n}} \right) \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\left(\mathrm{cosh}\:{x}_{{n}} \:\mathrm{cosh}\:\alpha+\mathrm{sinh}\:{x}_{{n}} \:\mathrm{sinh}\:\alpha\right) \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left({x}_{{n}} +\alpha\right) \\ $$$${on}\:{the}\:{other}\:{side}: \\ $$$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left({x}_{{n}+\mathrm{1}} −\alpha\right) \\ $$$$\Rightarrow\mathrm{cosh}\:\left({x}_{{n}+\mathrm{1}} −\alpha\right)=\mathrm{cosh}\:\left({x}_{{n}} +\alpha\right) \\ $$$$\Rightarrow{x}_{{n}+\mathrm{1}} −\alpha={x}_{{n}} +\alpha \\ $$$$\Rightarrow{x}_{{n}+\mathrm{1}} ={x}_{{n}} +\mathrm{2}\alpha\:\:\leftarrow\:{A}.{P}.\:{with}\:{c}.{d}.\:=\mathrm{2}\alpha \\ $$$$\Rightarrow{x}_{{n}} ={x}_{\mathrm{0}} +\mathrm{2}{n}\alpha \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left({x}_{\mathrm{0}} +\mathrm{2}{n}\alpha−\alpha\right) \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left[{x}_{\mathrm{0}} +\left(\mathrm{2}{n}−\mathrm{1}\right)\:\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right] \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left({x}_{\mathrm{0}} −\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)=\mathrm{1} \\ $$$$\Rightarrow{x}_{\mathrm{0}} =\mathrm{2}\:\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left[\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right] \\ $$$$ \\ $$$${additionally}: \\ $$$$\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}=\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}+\sqrt{\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}}\right)=\mathrm{ln}\:\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}=\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\right)^{\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$${e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} =\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\right)^{−\left(\mathrm{2}{n}+\mathrm{1}\right)} =\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\mathrm{cosh}\:\left[\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right] \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[{e}^{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} +{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}} \right] \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\right)^{\left(\mathrm{2}{n}+\mathrm{1}\right)} +\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\left(\mathrm{2}{n}+\mathrm{1}\right)} \right] \\ $$

Commented by SEKRET last updated on 05/Jan/23

  beatiful solution

$$\:\:\boldsymbol{\mathrm{beatiful}}\:\boldsymbol{\mathrm{solution}} \\ $$

Commented by Frix last updated on 05/Jan/23

Remember that cosh α =((e^α +e^(−α) )/2)  a_n =(1/( (√5)))((((1+(√5))/2))^(2n+1) −(((1−(√5))/2))^(2n+1) )=  =(1/( (√5)))((((1+(√5))/2))^(2b+1) +((2/(1+(√5))))^(2n+1) )=  =(1/( (√5)))(t^x +t^(−x) )=  =(1/( (√5)))(e^(xln t) +e^(−xln t) )=  =(2/( (√5)))cosh (xln t) =  =(2/( (√5)))cosh ((2n+1)ln ((1+(√5))/2)) =            ln (x+(√(x^2 −1))) =cosh^(−1)  x            ln ((1+(√5))/2) =ln (((√5)/2)+(√((5/4)−1))) =cosh^(−1)  ((√5)/2)  =(2/( (√5)))cosh ((2n+1)cosh^(−1)  ((√5)/2))  ....which is your result

$$\mathrm{Remember}\:\mathrm{that}\:\mathrm{cosh}\:\alpha\:=\frac{\mathrm{e}^{\alpha} +\mathrm{e}^{−\alpha} }{\mathrm{2}} \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right)= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2}{b}+\mathrm{1}} +\left(\frac{\mathrm{2}}{\mathrm{1}+\sqrt{\mathrm{5}}}\right)^{\mathrm{2}{n}+\mathrm{1}} \right)= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left({t}^{{x}} +{t}^{−{x}} \right)= \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\mathrm{e}^{{x}\mathrm{ln}\:{t}} +\mathrm{e}^{−{x}\mathrm{ln}\:{t}} \right)= \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\mathrm{cosh}\:\left({x}\mathrm{ln}\:{t}\right)\:= \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\mathrm{cosh}\:\left(\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{ln}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\:= \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\:=\mathrm{cosh}^{−\mathrm{1}} \:{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{ln}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:=\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}+\sqrt{\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{1}}\right)\:=\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\mathrm{cosh}\:\left(\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{cosh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$....\mathrm{which}\:\mathrm{is}\:\mathrm{your}\:\mathrm{result} \\ $$

Commented by mr W last updated on 05/Jan/23

thanks sir!  i′ve also added the deduction to  a_n =(1/( (√5)))[((((√5)+1)/2))^((2n+1)) +((((√5)−1)/2))^((2n+1)) ].  see above.

$${thanks}\:{sir}! \\ $$$${i}'{ve}\:{also}\:{added}\:{the}\:{deduction}\:{to} \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\right)^{\left(\mathrm{2}{n}+\mathrm{1}\right)} +\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\left(\mathrm{2}{n}+\mathrm{1}\right)} \right]. \\ $$$${see}\:{above}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com