Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 184307 by Mastermind last updated on 05/Jan/23

Show that the boundary−value  problem y′′+λy=0           y(0)=0,  y(L)=0 has only the trival solution  y=0 for the cases λ=0 and λ<0.  let L be a non−zero real number.      ?

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{boundary}−\mathrm{value} \\ $$ $$\mathrm{problem}\:\mathrm{y}''+\lambda\mathrm{y}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0}, \\ $$ $$\mathrm{y}\left(\mathrm{L}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{only}\:\mathrm{the}\:\mathrm{trival}\:\mathrm{solution} \\ $$ $$\mathrm{y}=\mathrm{0}\:\mathrm{for}\:\mathrm{the}\:\mathrm{cases}\:\lambda=\mathrm{0}\:\mathrm{and}\:\lambda<\mathrm{0}. \\ $$ $$\mathrm{let}\:\mathrm{L}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}−\mathrm{zero}\:\mathrm{real}\:\mathrm{number}. \\ $$ $$ \\ $$ $$ \\ $$ $$? \\ $$

Answered by FelipeLz last updated on 05/Jan/23

y′′+λy = 0  y = e^r  → r^2 e^r +λe^r  = 0  r^2  = −λ     λ = 0 → r = 0 ∴ y(x) = c   y(0) = 0 = c  y(x) = 0     λ < 0 → r = ±(√(−λ)) ∴ y(x) = c_1 e^((√(−λ))x) +c_2 e^(−(√(−λ))x)   y(0) = 0 → c_1 +c_2  = 0 ∴ y(x) = c(e^((√(−λ))x) −e^(−(√(−λ))x) )  y(L) = 0 → c(e^((√(−λ))L) −e^(−(√(−λ))L) ) = 0   L ≠ 0 → e^((√(−λ))L) −e^(−(√(−λ))L)  ≠ 0 ∴ c = 0  y(x) = 0

$${y}''+\lambda{y}\:=\:\mathrm{0} \\ $$ $${y}\:=\:{e}^{{r}} \:\rightarrow\:{r}^{\mathrm{2}} {e}^{{r}} +\lambda{e}^{{r}} \:=\:\mathrm{0} \\ $$ $${r}^{\mathrm{2}} \:=\:−\lambda \\ $$ $$\: \\ $$ $$\lambda\:=\:\mathrm{0}\:\rightarrow\:{r}\:=\:\mathrm{0}\:\therefore\:{y}\left({x}\right)\:=\:{c}\: \\ $$ $${y}\left(\mathrm{0}\right)\:=\:\mathrm{0}\:=\:{c} \\ $$ $${y}\left({x}\right)\:=\:\mathrm{0} \\ $$ $$\: \\ $$ $$\lambda\:<\:\mathrm{0}\:\rightarrow\:{r}\:=\:\pm\sqrt{−\lambda}\:\therefore\:{y}\left({x}\right)\:=\:{c}_{\mathrm{1}} {e}^{\sqrt{−\lambda}{x}} +{c}_{\mathrm{2}} {e}^{−\sqrt{−\lambda}{x}} \\ $$ $${y}\left(\mathrm{0}\right)\:=\:\mathrm{0}\:\rightarrow\:{c}_{\mathrm{1}} +{c}_{\mathrm{2}} \:=\:\mathrm{0}\:\therefore\:{y}\left({x}\right)\:=\:{c}\left({e}^{\sqrt{−\lambda}{x}} −{e}^{−\sqrt{−\lambda}{x}} \right) \\ $$ $${y}\left({L}\right)\:=\:\mathrm{0}\:\rightarrow\:{c}\left({e}^{\sqrt{−\lambda}{L}} −{e}^{−\sqrt{−\lambda}{L}} \right)\:=\:\mathrm{0}\: \\ $$ $${L}\:\neq\:\mathrm{0}\:\rightarrow\:{e}^{\sqrt{−\lambda}{L}} −{e}^{−\sqrt{−\lambda}{L}} \:\neq\:\mathrm{0}\:\therefore\:{c}\:=\:\mathrm{0} \\ $$ $${y}\left({x}\right)\:=\:\mathrm{0} \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com