Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 184387 by ajfour last updated on 05/Jan/23

Commented by ajfour last updated on 05/Jan/23

If all three coloured areas are  equal then find parameters   h and k of parabola y=(x−h)^2 +k.

$${If}\:{all}\:{three}\:{coloured}\:{areas}\:{are} \\ $$$${equal}\:{then}\:{find}\:{parameters}\: \\ $$$${h}\:{and}\:{k}\:{of}\:{parabola}\:{y}=\left({x}−{h}\right)^{\mathrm{2}} +{k}. \\ $$

Answered by mr W last updated on 06/Jan/23

Commented by mr W last updated on 06/Jan/23

Commented by mr W last updated on 07/Jan/23

area of red triangle A_1 =((2×1)/2)=1  eqn. of line:  y=(x/2)+1  eqn. of parabola:  y=(x−h)^2 +k  intersection of line and parabola:  (x−h)^2 +k=(x/2)+1  (x−h)^2 −(((x−h))/2)+(k−1−(h/2))=0  ⇒x_2 −h=(1/4)+(1/4)(√(17+8h−16k))  ⇒y_2 =(9/8)+(h/2)+(1/8)(√(17+8h−16k))  area of blue region:  A_3 =(1/6)[(1/4)−4(k−1−(h/2))]^(3/2) =A_1 =1  (1/6)[(1/4)−4(k−1−(h/2))]^(3/2) =1  17−16k+8h=4((36))^(1/3)   ⇒k=(h/2)+((17)/(16))−(((36))^(1/3) /4)  ⇒x_2 =h+(1/4)+((6)^(1/3) /2)  ⇒y_2 =(h/2)+(9/8)+((6)^(1/3) /4)    since A_2 =A_3 , area under the parabola  is equal to area under the line from  x=0 to x=x_2 .  x_2 k+(h^3 /3)+(((x_2 −h)^3 )/3)=(((1+y_2 )x_2 )/2)  (h+(1/4)+((6)^(1/3) /2))((h/2)+((17)/(16))−(((36))^(1/3) /4))+(h^3 /3)+((((1/4)+((6)^(1/3) /2))^3 )/3)=(((1+(h/2)+(9/8)+((6)^(1/3) /4))(h+(1/4)+((6)^(1/3) /2)))/2)  ⇒h^3 +(3/4)(h+(1/4)+((6)^(1/3) /2))(h−((6)^(1/3) /2)−((36))^(1/3) )+((1/4)+((6)^(1/3) /2))^3 =0  since this is a cubic equation for h,  exact solution is possible, but very  complicated. we get approximately  h≈1.5671, k≈1.0206

$${area}\:{of}\:{red}\:{triangle}\:{A}_{\mathrm{1}} =\frac{\mathrm{2}×\mathrm{1}}{\mathrm{2}}=\mathrm{1} \\ $$$${eqn}.\:{of}\:{line}: \\ $$$${y}=\frac{{x}}{\mathrm{2}}+\mathrm{1} \\ $$$${eqn}.\:{of}\:{parabola}: \\ $$$${y}=\left({x}−{h}\right)^{\mathrm{2}} +{k} \\ $$$${intersection}\:{of}\:{line}\:{and}\:{parabola}: \\ $$$$\left({x}−{h}\right)^{\mathrm{2}} +{k}=\frac{{x}}{\mathrm{2}}+\mathrm{1} \\ $$$$\left({x}−{h}\right)^{\mathrm{2}} −\frac{\left({x}−{h}\right)}{\mathrm{2}}+\left({k}−\mathrm{1}−\frac{{h}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}_{\mathrm{2}} −{h}=\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{17}+\mathrm{8}{h}−\mathrm{16}{k}} \\ $$$$\Rightarrow{y}_{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{8}}+\frac{{h}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}\sqrt{\mathrm{17}+\mathrm{8}{h}−\mathrm{16}{k}} \\ $$$${area}\:{of}\:{blue}\:{region}: \\ $$$${A}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{6}}\left[\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{4}\left({k}−\mathrm{1}−\frac{{h}}{\mathrm{2}}\right)\right]^{\mathrm{3}/\mathrm{2}} ={A}_{\mathrm{1}} =\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\left[\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{4}\left({k}−\mathrm{1}−\frac{{h}}{\mathrm{2}}\right)\right]^{\mathrm{3}/\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{17}−\mathrm{16}{k}+\mathrm{8}{h}=\mathrm{4}\sqrt[{\mathrm{3}}]{\mathrm{36}} \\ $$$$\Rightarrow{k}=\frac{{h}}{\mathrm{2}}+\frac{\mathrm{17}}{\mathrm{16}}−\frac{\sqrt[{\mathrm{3}}]{\mathrm{36}}}{\mathrm{4}} \\ $$$$\Rightarrow{x}_{\mathrm{2}} ={h}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}} \\ $$$$\Rightarrow{y}_{\mathrm{2}} =\frac{{h}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{8}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{4}} \\ $$$$ \\ $$$${since}\:{A}_{\mathrm{2}} ={A}_{\mathrm{3}} ,\:{area}\:{under}\:{the}\:{parabola} \\ $$$${is}\:{equal}\:{to}\:{area}\:{under}\:{the}\:{line}\:{from} \\ $$$${x}=\mathrm{0}\:{to}\:{x}={x}_{\mathrm{2}} . \\ $$$${x}_{\mathrm{2}} {k}+\frac{{h}^{\mathrm{3}} }{\mathrm{3}}+\frac{\left({x}_{\mathrm{2}} −{h}\right)^{\mathrm{3}} }{\mathrm{3}}=\frac{\left(\mathrm{1}+{y}_{\mathrm{2}} \right){x}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left({h}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}}\right)\left(\frac{{h}}{\mathrm{2}}+\frac{\mathrm{17}}{\mathrm{16}}−\frac{\sqrt[{\mathrm{3}}]{\mathrm{36}}}{\mathrm{4}}\right)+\frac{{h}^{\mathrm{3}} }{\mathrm{3}}+\frac{\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}}\right)^{\mathrm{3}} }{\mathrm{3}}=\frac{\left(\mathrm{1}+\frac{{h}}{\mathrm{2}}+\frac{\mathrm{9}}{\mathrm{8}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{4}}\right)\left({h}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$\Rightarrow{h}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{4}}\left({h}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}}\right)\left({h}−\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}}−\sqrt[{\mathrm{3}}]{\mathrm{36}}\right)+\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{6}}}{\mathrm{2}}\right)^{\mathrm{3}} =\mathrm{0} \\ $$$${since}\:{this}\:{is}\:{a}\:{cubic}\:{equation}\:{for}\:{h}, \\ $$$${exact}\:{solution}\:{is}\:{possible},\:{but}\:{very} \\ $$$${complicated}.\:{we}\:{get}\:{approximately} \\ $$$${h}\approx\mathrm{1}.\mathrm{5671},\:{k}\approx\mathrm{1}.\mathrm{0206} \\ $$

Commented by ajfour last updated on 06/Jan/23

Marvellous Sir! I shall attempt too.

$${Marvellous}\:{Sir}!\:{I}\:{shall}\:{attempt}\:{too}. \\ $$

Answered by ajfour last updated on 07/Jan/23

If vertex of parabola is Origin.  y=x^2     [eq. of  parabola]  y=(x/2)+(1+(h/2)−k)     [eq. of  line]  say   1+(h/2)−k=m  t^2 =(t/2)+m  ∫_(−h) ^( t) (x^2 −(x/2)−m)dx=A   (=0,1)  ((t^3 /3)−(t^2 /4)+mt)+((h^3 /3)+(h^2 /4)+mh)=A  ⇒  (t^3 /3)−(t^2 /4)+t^3 −(t^2 /2)            +((h^3 /3)+(h^2 /4)+t^2 h−((th)/2))=A  ⇒ (t+h){((t^2 −th+h^2 )/3)−(((t−h))/4)                            +t^2 −(t/2)}=A  For A=0,  t=t_2   as  t+h≠0  ⇒  4(t^2 −th+h^2 )+12t^2 +3h=6t+3t  ⇒   16t^2 −4th+4h^2 =9t−3h  ⇒  4((t^2 /h^2 )−(t/h)+1)=(3/h)(((3t)/h)−1)  say  (t/h)=s  4s^2 −(4+(9/h))s+(4+(3/h))=0  ⇒  s=(1/2)(1+(9/(4h)))±(√((1/4)(1+(9/(4h)))^2 −(1+(3/(4h)))))  ⇒ 8hs=4h+9±(√((4h+9)^2 −16h(4h+3)))    8hs=4h+9±(√(81+24h−48h^2 ))  ....

$${If}\:{vertex}\:{of}\:{parabola}\:{is}\:{Origin}. \\ $$$${y}={x}^{\mathrm{2}} \:\:\:\:\left[{eq}.\:{of}\:\:{parabola}\right] \\ $$$${y}=\frac{{x}}{\mathrm{2}}+\left(\mathrm{1}+\frac{{h}}{\mathrm{2}}−{k}\right)\:\:\:\:\:\left[{eq}.\:{of}\:\:{line}\right] \\ $$$${say}\:\:\:\mathrm{1}+\frac{{h}}{\mathrm{2}}−{k}={m} \\ $$$${t}^{\mathrm{2}} =\frac{{t}}{\mathrm{2}}+{m} \\ $$$$\int_{−{h}} ^{\:{t}} \left({x}^{\mathrm{2}} −\frac{{x}}{\mathrm{2}}−{m}\right){dx}={A}\:\:\:\left(=\mathrm{0},\mathrm{1}\right) \\ $$$$\left(\frac{{t}^{\mathrm{3}} }{\mathrm{3}}−\frac{{t}^{\mathrm{2}} }{\mathrm{4}}+{mt}\right)+\left(\frac{{h}^{\mathrm{3}} }{\mathrm{3}}+\frac{{h}^{\mathrm{2}} }{\mathrm{4}}+{mh}\right)={A} \\ $$$$\Rightarrow\:\:\frac{{t}^{\mathrm{3}} }{\mathrm{3}}−\frac{{t}^{\mathrm{2}} }{\mathrm{4}}+{t}^{\mathrm{3}} −\frac{{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:+\left(\frac{{h}^{\mathrm{3}} }{\mathrm{3}}+\frac{{h}^{\mathrm{2}} }{\mathrm{4}}+{t}^{\mathrm{2}} {h}−\frac{{th}}{\mathrm{2}}\right)={A} \\ $$$$\Rightarrow\:\left({t}+{h}\right)\left\{\frac{{t}^{\mathrm{2}} −{th}+{h}^{\mathrm{2}} }{\mathrm{3}}−\frac{\left({t}−{h}\right)}{\mathrm{4}}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{t}^{\mathrm{2}} −\frac{{t}}{\mathrm{2}}\right\}={A} \\ $$$${For}\:{A}=\mathrm{0},\:\:{t}={t}_{\mathrm{2}} \\ $$$${as}\:\:{t}+{h}\neq\mathrm{0}\:\:\Rightarrow \\ $$$$\mathrm{4}\left({t}^{\mathrm{2}} −{th}+{h}^{\mathrm{2}} \right)+\mathrm{12}{t}^{\mathrm{2}} +\mathrm{3}{h}=\mathrm{6}{t}+\mathrm{3}{t} \\ $$$$\Rightarrow\:\:\:\mathrm{16}{t}^{\mathrm{2}} −\mathrm{4}{th}+\mathrm{4}{h}^{\mathrm{2}} =\mathrm{9}{t}−\mathrm{3}{h} \\ $$$$\Rightarrow\:\:\mathrm{4}\left(\frac{{t}^{\mathrm{2}} }{{h}^{\mathrm{2}} }−\frac{{t}}{{h}}+\mathrm{1}\right)=\frac{\mathrm{3}}{{h}}\left(\frac{\mathrm{3}{t}}{{h}}−\mathrm{1}\right) \\ $$$${say}\:\:\frac{{t}}{{h}}={s} \\ $$$$\mathrm{4}{s}^{\mathrm{2}} −\left(\mathrm{4}+\frac{\mathrm{9}}{{h}}\right){s}+\left(\mathrm{4}+\frac{\mathrm{3}}{{h}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:{s}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{9}}{\mathrm{4}{h}}\right)\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\frac{\mathrm{9}}{\mathrm{4}{h}}\right)^{\mathrm{2}} −\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}{h}}\right)} \\ $$$$\Rightarrow\:\mathrm{8}{hs}=\mathrm{4}{h}+\mathrm{9}\pm\sqrt{\left(\mathrm{4}{h}+\mathrm{9}\right)^{\mathrm{2}} −\mathrm{16}{h}\left(\mathrm{4}{h}+\mathrm{3}\right)} \\ $$$$\:\:\mathrm{8}{hs}=\mathrm{4}{h}+\mathrm{9}\pm\sqrt{\mathrm{81}+\mathrm{24}{h}−\mathrm{48}{h}^{\mathrm{2}} } \\ $$$$.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com