Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 184477 by Shrinava last updated on 07/Jan/23

Commented by JDamian last updated on 07/Jan/23

I don't even understand your question. Would you mind express in math language?

Commented by mr W last updated on 07/Jan/23

when C(n)=core of number n, then  C(21)=18  C(12)=9

$${when}\:{C}\left({n}\right)={core}\:{of}\:{number}\:{n},\:{then} \\ $$$${C}\left(\mathrm{21}\right)=\mathrm{18} \\ $$$${C}\left(\mathrm{12}\right)=\mathrm{9} \\ $$

Answered by Rasheed.Sindhi last updated on 07/Jan/23

•tu^(−)  is 2-digit number.Clearly    u∈{0,1,2,...,9} & t∈{1,2,3,...,9}  •Core of tu^(−)  is either 9 or 18      and  this depends upon values of     u and t as follows:    determinant ((u,(values of t_(for core 9_(/total) ) ),(values of t_(for core 18_(/total) ) )),(0,(1≤t≤9       9),(−                    0)),(1,(−                   0),(1≤t≤9          9)),(2,(t=1               1),(2≤t≤9          8)),(3,(t=1,2           2),(3≤t≤9          7)),(4,(1≤t≤3        3),(4≤t≤9          6)),(5,(1≤t≤4        4),(5≤t≤9          5)),(6,(1≤t≤5        5),(6≤t≤9          4)),(7,(1≤t≤6        6),(7≤t≤9          3)),(8,(1≤t≤7        7),(t=8,9             2)),(9,(1≤t≤8        8        ),(t=9                 1)),(,(TOTAL     45),(                        45)))  Sum of the cores=9×45+18×45                                        =1215

$$\bullet\overline {{tu}}\:{is}\:\mathrm{2}-{digit}\:{number}.{Clearly} \\ $$$$\:\:{u}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},...,\mathrm{9}\right\}\:\&\:{t}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{9}\right\} \\ $$$$\bullet{Core}\:{of}\:\overline {{tu}}\:{is}\:{either}\:\mathrm{9}\:{or}\:\mathrm{18}\: \\ $$$$\:\:\:{and}\:\:{this}\:{depends}\:{upon}\:{values}\:{of} \\ $$$$\:\:\:{u}\:{and}\:{t}\:{as}\:{follows}:\: \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}{{u}}&\hline{\underset{\underset{/{total}} {{for}\:{core}\:\mathrm{9}}} {{values}\:{of}\:{t}}}&\hline{\underset{\underset{/{total}} {{for}\:{core}\:\mathrm{18}}} {{values}\:{of}\:{t}}}\\{\mathrm{0}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\mathrm{9}}&\hline{−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{1}}&\hline{−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{9}}\\{\mathrm{2}}&\hline{{t}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}&\hline{\mathrm{2}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{8}}\\{\mathrm{3}}&\hline{{t}=\mathrm{1},\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}&\hline{\mathrm{3}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{7}}\\{\mathrm{4}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{3}\:\:\:\:\:\:\:\:\mathrm{3}}&\hline{\mathrm{4}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{6}}\\{\mathrm{5}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{4}\:\:\:\:\:\:\:\:\mathrm{4}}&\hline{\mathrm{5}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{5}}\\{\mathrm{6}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{5}}&\hline{\mathrm{6}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{4}}\\{\mathrm{7}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{6}\:\:\:\:\:\:\:\:\mathrm{6}}&\hline{\mathrm{7}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{8}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{7}\:\:\:\:\:\:\:\:\mathrm{7}}&\hline{{t}=\mathrm{8},\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{9}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{8}\:\:\:\:\:\:\:\:\mathrm{8}\:\:\:\:\:\:\:\:}&\hline{{t}=\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{}&\hline{{TOTAL}\:\:\:\:\:\mathrm{45}}&\hline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{45}}\\\hline\end{array} \\ $$$${Sum}\:{of}\:{the}\:{cores}=\mathrm{9}×\mathrm{45}+\mathrm{18}×\mathrm{45} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1215}\:\: \\ $$

Answered by Rasheed.Sindhi last updated on 08/Jan/23

AnOther way:  •tu^(−)  is 2-digit number.Clearly    u∈{0,1,2,...,9} & t∈{1,2,3,...,9}  Observations:  •Number of 2-digit numbers      =99−9=90  •Core of tu^(−)  is either 9 or 18  •All numbers in which  t<u  have     core  9, other numbers(in which     t≥u but u≠0) have core 18  •In case u=0 core of  t0^(−)  is 9      although t>u  • Number of the numbers having      core 9 is 45.^★       So sum of cores is  9 × 45 = 405  • Obviously number of the remaining     numbers(in which t≥u and having     cores 18) is 90−45=45.So the sum     of cores 18×45=810  •Sum of cores of  all 2-digit number     is  therefore  405+810=1215  ^★ The way of counting is given in      my other answer.The better way    of counting  may be suggested    by sir mr W

$$\boldsymbol{\mathrm{AnOther}}\:\boldsymbol{\mathrm{way}}: \\ $$$$\bullet\overline {{tu}}\:{is}\:\mathrm{2}-{digit}\:{number}.{Clearly} \\ $$$$\:\:{u}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},...,\mathrm{9}\right\}\:\&\:{t}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{9}\right\} \\ $$$$\boldsymbol{{Observations}}: \\ $$$$\bullet{Number}\:{of}\:\mathrm{2}-{digit}\:{numbers} \\ $$$$\:\:\:\:=\mathrm{99}−\mathrm{9}=\mathrm{90} \\ $$$$\bullet{Core}\:{of}\:\overline {{tu}}\:{is}\:{either}\:\mathrm{9}\:{or}\:\mathrm{18} \\ $$$$\bullet\boldsymbol{{All}}\:\boldsymbol{{numbers}}\:\boldsymbol{{in}}\:\boldsymbol{{which}}\:\:\boldsymbol{{t}}<\boldsymbol{{u}}\:\:\boldsymbol{{have}} \\ $$$$\:\:\:\boldsymbol{{core}}\:\:\mathrm{9},\:\boldsymbol{{other}}\:\boldsymbol{{numbers}}\left(\boldsymbol{{in}}\:\boldsymbol{{which}}\right. \\ $$$$\left.\:\:\:\boldsymbol{{t}}\geqslant\boldsymbol{{u}}\:\boldsymbol{{but}}\:\boldsymbol{{u}}\neq\mathrm{0}\right)\:\boldsymbol{{have}}\:\boldsymbol{{core}}\:\mathrm{18} \\ $$$$\bullet\boldsymbol{{In}}\:\boldsymbol{{case}}\:\boldsymbol{{u}}=\mathrm{0}\:\boldsymbol{{core}}\:\boldsymbol{{of}}\:\:\overline {\boldsymbol{{t}}\mathrm{0}}\:\boldsymbol{{is}}\:\mathrm{9}\: \\ $$$$\:\:\:\boldsymbol{{although}}\:\boldsymbol{{t}}>\boldsymbol{{u}} \\ $$$$\bullet\:{Number}\:{of}\:{the}\:{numbers}\:{having} \\ $$$$\:\:\:\:{core}\:\mathrm{9}\:{is}\:\mathrm{45}.^{\bigstar} \: \\ $$$$\:\:\:{So}\:{sum}\:{of}\:{cores}\:{is}\:\:\mathrm{9}\:×\:\mathrm{45}\:=\:\mathrm{405} \\ $$$$\bullet\:{Obviously}\:{number}\:{of}\:{the}\:{remaining} \\ $$$$\:\:\:{numbers}\left({in}\:{which}\:{t}\geqslant{u}\:{and}\:{having}\right. \\ $$$$\left.\:\:\:{cores}\:\mathrm{18}\right)\:{is}\:\mathrm{90}−\mathrm{45}=\mathrm{45}.{So}\:{the}\:{sum} \\ $$$$\:\:\:{of}\:{cores}\:\mathrm{18}×\mathrm{45}=\mathrm{810} \\ $$$$\bullet{Sum}\:{of}\:{cores}\:{of}\:\:{all}\:\mathrm{2}-{digit}\:{number} \\ $$$$\:\:\:{is}\:\:{therefore}\:\:\mathrm{405}+\mathrm{810}=\mathrm{1215} \\ $$$$\:^{\bigstar} {The}\:{way}\:{of}\:{counting}\:{is}\:{given}\:{in} \\ $$$$\:\:\:\:{my}\:{other}\:{answer}.\boldsymbol{{The}}\:\boldsymbol{{better}}\:\boldsymbol{{way}} \\ $$$$\:\:\boldsymbol{{of}}\:\boldsymbol{{counting}}\:\:\boldsymbol{{may}}\:\boldsymbol{{be}}\:\boldsymbol{{suggested}} \\ $$$$\:\:\boldsymbol{{by}}\:\boldsymbol{{sir}}\:\boldsymbol{{mr}}\:\boldsymbol{{W}} \\ $$

Commented by mr W last updated on 08/Jan/23

i think you have greatly solved sir.  numbers with t<u have the core  9, while numbers with t≥u have   the core 18^(∗)) .  this is just an observation. to be  mathematically strict, it must be  proved.    ^(∗))  there are exceptions! e.g. the core  of 20 is 9, not 18.

$${i}\:{think}\:{you}\:{have}\:{greatly}\:{solved}\:{sir}. \\ $$$$\boldsymbol{{numbers}}\:\boldsymbol{{with}}\:\boldsymbol{{t}}<\boldsymbol{{u}}\:\boldsymbol{{have}}\:\boldsymbol{{the}}\:\boldsymbol{{core}} \\ $$$$\mathrm{9},\:\boldsymbol{{while}}\:\boldsymbol{{numbers}}\:\boldsymbol{{with}}\:\boldsymbol{{t}}\geqslant\boldsymbol{{u}}\:\boldsymbol{{have}}\: \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{core}}\:\mathrm{18}\:^{\left.\ast\right)} . \\ $$$${this}\:{is}\:{just}\:{an}\:{observation}.\:{to}\:{be} \\ $$$${mathematically}\:{strict},\:{it}\:{must}\:{be} \\ $$$${proved}. \\ $$$$ \\ $$$$\:^{\left.\ast\right)} \:{there}\:{are}\:{exceptions}!\:{e}.{g}.\:{the}\:{core} \\ $$$${of}\:\mathrm{20}\:{is}\:\mathrm{9},\:{not}\:\mathrm{18}. \\ $$

Commented by Rasheed.Sindhi last updated on 08/Jan/23

Grateful sir! I′ve added now the  exception.Pl reread my answer.  As far as the proof is concerned I  know only one way that is to test  the proposition for all numbers(10,  11,12,...99).   determinant (((10),(20),(30),(40),(50),(60),(70),(80),(90)),((11),(21),(31),(41),(51),(61),(71),(81),(91)),((12),(22),(32),(42),(52),(62),(72),(82),(92)),((13),(23),(33),(43),(53),(63),(73),(83),(93)),((14),(24),(34),(44),(54),(64),(74),(84),(94)),((15),(25),(35),(45),(55),(65),(75),(85),(95)),((16),(26),(36),(46),(56),(66),(76),(86),(96)),((17),(27),(37),(47),(57),(67),(77),(87),(97)),((18),(28),(38),(48),(58),(68),(78),(88),(98)),((19),(29),(39),(49),(59),(69),(79),(89),(99)))  Blue numbers have core 9  Red  numbers have core 18

$$\boldsymbol{{Grateful}}\:\boldsymbol{{sir}}!\:{I}'{ve}\:{added}\:{now}\:{the} \\ $$$${exception}.{Pl}\:{reread}\:{my}\:{answer}. \\ $$$${As}\:{far}\:{as}\:{the}\:{proof}\:{is}\:{concerned}\:{I} \\ $$$${know}\:{only}\:{one}\:{way}\:{that}\:{is}\:{to}\:{test} \\ $$$${the}\:{proposition}\:{for}\:{all}\:{numbers}\left(\mathrm{10},\right. \\ $$$$\left.\mathrm{11},\mathrm{12},...\mathrm{99}\right). \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}{\mathrm{10}}&\hline{\mathrm{20}}&\hline{\mathrm{30}}&\hline{\mathrm{40}}&\hline{\mathrm{50}}&\hline{\mathrm{60}}&\hline{\mathrm{70}}&\hline{\mathrm{80}}&\hline{\mathrm{90}}\\{\mathrm{11}}&\hline{\mathrm{21}}&\hline{\mathrm{31}}&\hline{\mathrm{41}}&\hline{\mathrm{51}}&\hline{\mathrm{61}}&\hline{\mathrm{71}}&\hline{\mathrm{81}}&\hline{\mathrm{91}}\\{\mathrm{12}}&\hline{\mathrm{22}}&\hline{\mathrm{32}}&\hline{\mathrm{42}}&\hline{\mathrm{52}}&\hline{\mathrm{62}}&\hline{\mathrm{72}}&\hline{\mathrm{82}}&\hline{\mathrm{92}}\\{\mathrm{13}}&\hline{\mathrm{23}}&\hline{\mathrm{33}}&\hline{\mathrm{43}}&\hline{\mathrm{53}}&\hline{\mathrm{63}}&\hline{\mathrm{73}}&\hline{\mathrm{83}}&\hline{\mathrm{93}}\\{\mathrm{14}}&\hline{\mathrm{24}}&\hline{\mathrm{34}}&\hline{\mathrm{44}}&\hline{\mathrm{54}}&\hline{\mathrm{64}}&\hline{\mathrm{74}}&\hline{\mathrm{84}}&\hline{\mathrm{94}}\\{\mathrm{15}}&\hline{\mathrm{25}}&\hline{\mathrm{35}}&\hline{\mathrm{45}}&\hline{\mathrm{55}}&\hline{\mathrm{65}}&\hline{\mathrm{75}}&\hline{\mathrm{85}}&\hline{\mathrm{95}}\\{\mathrm{16}}&\hline{\mathrm{26}}&\hline{\mathrm{36}}&\hline{\mathrm{46}}&\hline{\mathrm{56}}&\hline{\mathrm{66}}&\hline{\mathrm{76}}&\hline{\mathrm{86}}&\hline{\mathrm{96}}\\{\mathrm{17}}&\hline{\mathrm{27}}&\hline{\mathrm{37}}&\hline{\mathrm{47}}&\hline{\mathrm{57}}&\hline{\mathrm{67}}&\hline{\mathrm{77}}&\hline{\mathrm{87}}&\hline{\mathrm{97}}\\{\mathrm{18}}&\hline{\mathrm{28}}&\hline{\mathrm{38}}&\hline{\mathrm{48}}&\hline{\mathrm{58}}&\hline{\mathrm{68}}&\hline{\mathrm{78}}&\hline{\mathrm{88}}&\hline{\mathrm{98}}\\{\mathrm{19}}&\hline{\mathrm{29}}&\hline{\mathrm{39}}&\hline{\mathrm{49}}&\hline{\mathrm{59}}&\hline{\mathrm{69}}&\hline{\mathrm{79}}&\hline{\mathrm{89}}&\hline{\mathrm{99}}\\\hline\end{array} \\ $$$$\mathcal{B}{lue}\:{numbers}\:{have}\:{core}\:\mathrm{9} \\ $$$${Red}\:\:{numbers}\:{have}\:{core}\:\mathrm{18} \\ $$

Commented by mr W last updated on 08/Jan/23

your solution is great!  as for the proof, see my attempt.

$${your}\:{solution}\:{is}\:{great}! \\ $$$${as}\:{for}\:{the}\:{proof},\:{see}\:{my}\:{attempt}. \\ $$

Answered by mr W last updated on 08/Jan/23

there are 3 typs of 2−digit numbers  typ 1: like 10, 20  9 numbers, core of each is 9  typ 2: like 11, 22  9 numbers, core of each is 18  typ 3: like 12, 23 or 21, 32  9×8=72 such numbers. one half of them,  like 12, have the core 9, the other half,  like 21, have the core 18.    the sum of the cores of all 2−digit  numbers:  9×8+9×18+36×9+36×18=1215

$${there}\:{are}\:\mathrm{3}\:{typs}\:{of}\:\mathrm{2}−{digit}\:{numbers} \\ $$$${typ}\:\mathrm{1}:\:{like}\:\mathrm{10},\:\mathrm{20} \\ $$$$\mathrm{9}\:{numbers},\:{core}\:{of}\:{each}\:{is}\:\mathrm{9} \\ $$$${typ}\:\mathrm{2}:\:{like}\:\mathrm{11},\:\mathrm{22} \\ $$$$\mathrm{9}\:{numbers},\:{core}\:{of}\:{each}\:{is}\:\mathrm{18} \\ $$$${typ}\:\mathrm{3}:\:{like}\:\mathrm{12},\:\mathrm{23}\:{or}\:\mathrm{21},\:\mathrm{32} \\ $$$$\mathrm{9}×\mathrm{8}=\mathrm{72}\:{such}\:{numbers}.\:{one}\:{half}\:{of}\:{them}, \\ $$$${like}\:\mathrm{12},\:{have}\:{the}\:{core}\:\mathrm{9},\:{the}\:{other}\:{half}, \\ $$$${like}\:\mathrm{21},\:{have}\:{the}\:{core}\:\mathrm{18}. \\ $$$$ \\ $$$${the}\:{sum}\:{of}\:{the}\:{cores}\:{of}\:{all}\:\mathrm{2}−{digit} \\ $$$${numbers}: \\ $$$$\mathrm{9}×\mathrm{8}+\mathrm{9}×\mathrm{18}+\mathrm{36}×\mathrm{9}+\mathrm{36}×\mathrm{18}=\mathrm{1215} \\ $$

Commented by mr W last updated on 09/Jan/23

about the core of  2−digit numbers  the core of a 2−digit number is  defined as the sum of digits of the  9 times of this number.   example n=25  9n=9×25=225  2+2+5=9  that means the core of 25 is 9.    case 1: numbers with digit zero  n=a0  9n=10n−n=a00−a0  the first digit of is a−1, the  second digit is 10−a, the third is 0.  sum of all digits is a−1+10−a+0=9  that means the core of a0 is always 9.    case 2: numbers without digit zero  n=ab  9n=10n−n=ab0−ab  the third digit is 10−b  the second digit is b−1−a if b−1≥a                                     or 10+b−1−a if b−1<a  the first digit is a if b−1≥a                                 or a−1 if b−1<a  sum of all digits is           10−b+b−1−a+a=9 if b−1≥a    or 10−b+10+b−1−a+a−1=18 if b−1<a  that means   the core of ab is  { ((9 if a<b)),((18 if a≥b)) :}

$$\underline{{about}\:{the}\:{core}\:{of}\:\:\mathrm{2}−{digit}\:{numbers}} \\ $$$${the}\:{core}\:{of}\:{a}\:\mathrm{2}−{digit}\:{number}\:{is} \\ $$$${defined}\:{as}\:{the}\:{sum}\:{of}\:{digits}\:{of}\:{the} \\ $$$$\mathrm{9}\:{times}\:{of}\:{this}\:{number}.\: \\ $$$${example}\:{n}=\mathrm{25} \\ $$$$\mathrm{9}{n}=\mathrm{9}×\mathrm{25}=\mathrm{225} \\ $$$$\mathrm{2}+\mathrm{2}+\mathrm{5}=\mathrm{9} \\ $$$${that}\:{means}\:{the}\:{core}\:{of}\:\mathrm{25}\:{is}\:\mathrm{9}. \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:{numbers}\:{with}\:{digit}\:{zero} \\ $$$${n}=\underline{{a}\mathrm{0}} \\ $$$$\mathrm{9}{n}=\mathrm{10}{n}−{n}={a}\mathrm{00}−{a}\mathrm{0} \\ $$$${the}\:{first}\:{digit}\:{of}\:{is}\:{a}−\mathrm{1},\:{the} \\ $$$${second}\:{digit}\:{is}\:\mathrm{10}−{a},\:{the}\:{third}\:{is}\:\mathrm{0}. \\ $$$${sum}\:{of}\:{all}\:{digits}\:{is}\:{a}−\mathrm{1}+\mathrm{10}−{a}+\mathrm{0}=\mathrm{9} \\ $$$${that}\:{means}\:{the}\:{core}\:{of}\:\underline{{a}\mathrm{0}}\:{is}\:{always}\:\mathrm{9}. \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{numbers}\:{without}\:{digit}\:{zero} \\ $$$${n}=\underline{{ab}} \\ $$$$\mathrm{9}{n}=\mathrm{10}{n}−{n}={ab}\mathrm{0}−{ab} \\ $$$${the}\:{third}\:{digit}\:{is}\:\mathrm{10}−{b} \\ $$$${the}\:{second}\:{digit}\:{is}\:{b}−\mathrm{1}−{a}\:{if}\:{b}−\mathrm{1}\geqslant{a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\mathrm{10}+{b}−\mathrm{1}−{a}\:{if}\:{b}−\mathrm{1}<{a} \\ $$$${the}\:{first}\:{digit}\:{is}\:{a}\:{if}\:{b}−\mathrm{1}\geqslant{a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:{a}−\mathrm{1}\:{if}\:{b}−\mathrm{1}<{a} \\ $$$${sum}\:{of}\:{all}\:{digits}\:{is}\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{10}−{b}+{b}−\mathrm{1}−{a}+{a}=\mathrm{9}\:{if}\:{b}−\mathrm{1}\geqslant{a} \\ $$$$\:\:{or}\:\mathrm{10}−{b}+\mathrm{10}+{b}−\mathrm{1}−{a}+{a}−\mathrm{1}=\mathrm{18}\:{if}\:{b}−\mathrm{1}<{a} \\ $$$${that}\:{means}\: \\ $$$${the}\:{core}\:{of}\:\underline{{ab}}\:{is}\:\begin{cases}{\mathrm{9}\:{if}\:{a}<{b}}\\{\mathrm{18}\:{if}\:{a}\geqslant{b}}\end{cases} \\ $$

Commented by mr W last updated on 09/Jan/23

thanks!

$${thanks}! \\ $$

Commented by Rasheed.Sindhi last updated on 10/Jan/23

Xcellent Sir! Thanks a lot.

$$\mathcal{X}{cellent}\:\mathcal{S}{ir}!\:\mathcal{T}\boldsymbol{{hanks}}\:\boldsymbol{{a}}\:\boldsymbol{{lot}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com