Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 184523 by cortano1 last updated on 08/Jan/23

Answered by SEKRET last updated on 08/Jan/23

   t= (1/x)     dt= − (1/x^2 )dx      dx= −(1/t^2 )dt    ∫_∞ ^( 1) ((1/t^5 )/(⌊t⌋)) ∙(((−1)/t^2 ))dt=  ∫_1 ^( ∞) (1/(t^7 ⌊t⌋))dt=   Σ_(k=1) ^∞  ∫^(k+1) _k (1/(k∙t^7 )) dt=Σ_(k=1) ^∞ ((1/k)∙((−1)/(6t^6 )))_k ^(k+1) =   (1/6)∙(Σ_(k=1) ^∞ (1/k^7 )    − Σ_(k=1) ^∞ (1/(k(k+1)^6 )))=   ≈ (1/6)∙( 1.0083  − 0.016415)≈0.165314

t=1xdt=1x2dxdx=1t2dt11t5t(1t2)dt=11t7tdt=k=1kk+11kt7dt=k=1(1k16t6)kk+1=16(k=11k7k=11k(k+1)6)=16(1.00830.016415)0.165314

Answered by mr W last updated on 08/Jan/23

I=∫_0 ^1 (x^5 /(⌊(1/x)⌋))dx=?  let x=(1/t)  dx=−(dt/t^2 )  I=∫_1 ^∞ (dt/(t^7 ⌊t⌋))    =Σ_(k=1) ^∞ ∫_k ^(k+1) (dt/(t^7 ⌊t⌋))    =Σ_(k=1) ^∞ (1/k)∫_k ^(k+1) (dt/t^7 )    =Σ_(k=1) ^∞ (1/k)[−(1/(6t^6 ))]_k ^(k+1)     =(1/6)Σ_(k=1) ^∞ (1/k)[(1/k^6 )−(1/((k+1)^6 ))]    =(1/6)Σ_(k=1) ^∞ [(1/k^7 )−(1/(k(k+1)^6 ))]    =(1/6)(A−B)  A=Σ_(k=1) ^∞ (1/k^7 )=ζ(7)   ← Riemann Zeta function ζ(s)=Σ_(n=1) ^∞ (1/n^s )  B=Σ_(k=1) ^∞ (1/(k(k+1)^6 ))     =Σ_(k=2) ^∞ (1/((k−1)k^6 ))     =Σ_(k=2) ^∞ [(1/((k−1)))−(1/k)−(1/k^2 )−(1/k^3 )−(1/k^4 )−(1/k^5 )−(1/k^6 )]     =Σ_(k=2) ^∞ (1/((k−1)))−Σ_(k=2) ^∞ (1/k)−Σ_(k=2) ^∞ ((1/k^2 )+(1/k^3 )+(1/k^4 )+(1/k^5 )+(1/k^6 ))     =Σ_(k=1) ^∞ (1/k)−Σ_(k=1) ^∞ (1/k)+1−Σ_(k=1) ^∞ ((1/k^2 )+(1/k^3 )+(1/k^4 )+(1/k^5 )+(1/k^6 ))+5     =−[ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)]+6  I=(1/6)[ζ(7)+ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)−6]  ⇒I=((ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)+ζ(7))/6)−1         ≈0.165322382919

I=01x51xdx=?letx=1tdx=dtt2I=1dtt7t=k=1kk+1dtt7t=k=11kkk+1dtt7=k=11k[16t6]kk+1=16k=11k[1k61(k+1)6]=16k=1[1k71k(k+1)6]=16(AB)A=k=11k7=ζ(7)RiemannZetafunctionζ(s)=n=11nsB=k=11k(k+1)6=k=21(k1)k6=k=2[1(k1)1k1k21k31k41k51k6]=k=21(k1)k=21kk=2(1k2+1k3+1k4+1k5+1k6)=k=11kk=11k+1k=1(1k2+1k3+1k4+1k5+1k6)+5=[ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)]+6I=16[ζ(7)+ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)6]I=ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)+ζ(7)610.165322382919

Terms of Service

Privacy Policy

Contact: info@tinkutara.com