All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 184523 by cortano1 last updated on 08/Jan/23
Answered by SEKRET last updated on 08/Jan/23
t=1xdt=−1x2dxdx=−1t2dt∫∞11t5⌊t⌋⋅(−1t2)dt=∫1∞1t7⌊t⌋dt=∑∞k=1∫kk+11k⋅t7dt=∑∞k=1(1k⋅−16t6)kk+1=16⋅(∑∞k=11k7−∑∞k=11k(k+1)6)=≈16⋅(1.0083−0.016415)≈0.165314
Answered by mr W last updated on 08/Jan/23
I=∫01x5⌊1x⌋dx=?letx=1tdx=−dtt2I=∫1∞dtt7⌊t⌋=∑∞k=1∫kk+1dtt7⌊t⌋=∑∞k=11k∫kk+1dtt7=∑∞k=11k[−16t6]kk+1=16∑∞k=11k[1k6−1(k+1)6]=16∑∞k=1[1k7−1k(k+1)6]=16(A−B)A=∑∞k=11k7=ζ(7)←RiemannZetafunctionζ(s)=∑∞n=11nsB=∑∞k=11k(k+1)6=∑∞k=21(k−1)k6=∑∞k=2[1(k−1)−1k−1k2−1k3−1k4−1k5−1k6]=∑∞k=21(k−1)−∑∞k=21k−∑∞k=2(1k2+1k3+1k4+1k5+1k6)=∑∞k=11k−∑∞k=11k+1−∑∞k=1(1k2+1k3+1k4+1k5+1k6)+5=−[ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)]+6I=16[ζ(7)+ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)−6]⇒I=ζ(2)+ζ(3)+ζ(4)+ζ(5)+ζ(6)+ζ(7)6−1≈0.165322382919
Terms of Service
Privacy Policy
Contact: info@tinkutara.com